SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to SPPU Pune)

DEPARTMENT OF MECHANICAL ENGINEERING COURSE STRUCTURE – 2021 PATTERN for AY 2023-24 SECOND YEAR B. TECH.

	LIST OF ABBREVIATIONS							
Abbreviation	Full Form	Abbreviation	Full Form					
ES	Engineering Science	HSMC	Humanity Science					
PCC	Professional Core	CIA	Continuous Internal Assessment					
PE	Professional Elective	OR	End Semester Oral Examination					
OE	Open Elective	PR	End Semester Practical Examination					
ISE	In-Semester Evaluation	TW	Continuous Term Work Evaluation					
ESE	End-Semester Evaluation	BSC	Basic Science Course					
PRJ	Project	MLC	Mandatory Learning Course					

COURSE STRUCTURE- 2021 PATTERN SECOND YEAR B. TECH: MECHANICAL ENGINEERING

			Teach	ing Sc	cheme	Credits		Evalu	ation Sc	heme-N	larks	
Cat.	Code	Course Title	L	Т	Р		The	ory	тw	OR	PR	Total
			(hrs)	(hrs)	(hrs)		CIA	ESE	1 **	UK	IN	Total
PCC	ME201	Basic Thermodynamics	3	-	-	3	40	60	-	-	-	100
BSC	BS202	Engineering Mathematics-III	3	1	-	4	40	60	-	-	-	100
PCC	ME203	Strength of Materials	3	-	-	3	40	60	-	-	-	100
PCC	ME204	Manufacturing Process	3	-	-	3	40	60	-	-	-	100
HSMC	HS205	Universal Human Values & Ethics (UHV)	3	-	-	3	40	60	-	-	-	100
PCC	ME206	Lab-I (Machine Drawing & GM)	1*		4	2	-	-	-	-	50	50
PCC	ME207	Lab-II (Foundations of IoT)		-	2	1	-	-	-	-	25	25
PCC	ME208	Lab-III (Strength of Materials)	-	-	2	1	-	-	-	25	-	25
PCC	ME209	Lab-IV (MP)	-	-	2	1	-	-	-	-	50	50
PCC	ME210	Electrical Drives and Controls Lab	-	-	2	1	-	-	50	-	-	50
MLC	MC211	Mandatory Learning Course-III	1	-	-	Non Credit	-	-	-	-	-	Pass/ Fail
		Total	17	1	12	22	200	300	50	25	125	700

SEMESTER-III 2021

SEMESTER-IV

			Teachi	ng Scl	neme	Credits		Evalu	ation S	cheme-	Marks	
Cat.	Code	Course Title	L	Т	Р		The	eory	тw	OR	PR	Tatal
			(hrs)	(hrs)	(hrs)		CIA	ESE	IW	UK	rĸ	Total
PCC	ME212	Applied Thermodynamics	3	-	-	3	40	60	-	-	-	100
PCC	ME213	Theory of Machines	4	-	-	4	40	60	-	-	-	100
PCC	ME214	Fluid Mechanics and Machinery	3	-	-	3	40	60	-	-	-	100
PCC	ME215	Numerical Methods	3	-	-	3	40	60	-	-	-	100
PRJ	HS216	Corporate Readiness - I	-	-	2	1	-	-	-	-	-	50
PCC	ME217	Materials Science & Metallurgy	3	-	-	3	40	60	50	-	-	100
PCC	ME218	Lab-I (ATD+BT+FM)	-	-	2	1	-	-		-	50	50
PCC	ME219	Lab-II (TOM)	-	-	2	1	-	-	-	-	25	25
PCC	ME220	Lab-III (NM)	-	-	2	1	-	-	-	25	-	25
PCC	ME221	Lab-IV (MSM)	-	-	2	1			-	25	-	25
PRJ	ME 222	Mini project	-	-	2	1	-	-	-	25	-	25
MLC	MC223	Mandatory Learning Course-IV	1	-	-	Non Credit	-	-	-	-	-	Pass/ Fail
		Total	17	-	12	22	200	300	50	75	75	700

MC211	Mandatory Course-III	Constitution of India – Basic features and fundamental principles
MC223	Mandatory Course-IV	Python Programming//2D/3D CAD Modeling Certification

Note: For evaluation of Oral/Practical/TW, students should submit the journal regularly. Non submission of journal will be treated as absentees in concern head.

BASIC THERMODYNAMICS (ME201)

	Teaching Scheme	Examin	ation Scheme
Lectures:	3 Hrs. / Week	CIA	40 Marks
Practical:	-	End Sem Exam:	60 Marks
Credits:	3	Total:	100 Marks

Prerequisite Course: Engineering Physics, Basic Mechanical Engineering, Mathematics.

Course Objectives:

- 1. To Understand fundamental concepts and Laws of thermodynamics
- 2. To Apply the Laws of thermodynamics to different systems.
- 3. To Understand the processes governing the ideal gas behaviour.
- 4. To Understand reciprocating air compressor and evaluate its performance.
- 5. To Use of Steam Table/ Mollier chart for solving numerical.
- 6. To Understand steam generator and analyse its performance

Course Outcomes (COs): At the end of the course, learner will be able to

COs	Course Outcomes	Bloom	s Taxonomy
	Course Outcomes	Level	Descriptor
CO1	Determine work and heat interaction for thermodynamic processes by applying first law of thermodynamics	3	Apply
CO2	Apply Second Law of Thermodynamics to different systems and Determine the change in entropy for various processes.	3	Apply
CO3	Calculate heat transfer, work transfer & other thermodynamic entities for the processes undergone by ideal gas.	3	Apply
CO4	Estimate performance parameters of single stage reciprocating air compressor	3	Apply
CO5	Calculate different properties of pure substance and Estimate performance of vapour power cycles.	3	Apply
CO6	Determine performance parameters of Boilers.	3	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	1	2	1	3	3	3	-	3	-	-	2
CO2	3	3	1	2	1	2	2	3	3	3	-	3	-	-	2
CO3	3	2	2	2	1	0	0	3	2	3	-	1	-	-	2
CO4	2	3	2	3	1	3	2	3	3	3	-	1	1	-	2
CO5	2	3	2	3	1	3	2	3	3	3	-	3	1	-	2
CO6	2	3	2	3	1	0	0	3	3	3	-	3	-	-	2

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

Course Contents

Uni t	Contents	No. of Hour s	COs
1	Thermodynamic Concepts and First Law of Thermodynamics		
	Thermodynamic Concepts: Role of thermodynamics in mechanical Engineering, Thermodynamic Systems, Boundary, State of system, Properties of system, Classification of properties, Thermodynamic equilibrium, Zeroth law of thermodynamics. Definition of work & heat, Comparison of heat & work, types of work and their evaluation for thermodynamic processes. First law of Thermodynamics: First law of thermodynamics, Joules experiment, Applications of first law to flow and non-flow processes and cycles. Perpetual Motion Machine of the first kind (PMM I). Steady Flow Energy Equation (SFEE), Application of SFEE for devices such as nozzle, diffuser, throttling Device, turbine, compressor and heat exchanger.		CO1
2	Second Law of Thermodynamics and Entropy		
	Second Law of Thermodynamics: Limitations of first law of thermodynamics, Thermal reservoir, Heat Engine, Refrigerator and Heat pump, Schematic representation, Efficiency and Coefficient of Performance (COP), Kelvin-Planck & Clausius Statement of the Second law of Thermodynamics, Perpetual motion machine of second kind (PMM – II), Concept of Reversibility and Irreversibility. Entropy : Entropy as a property, Clausius' theorem, Clausius inequality, Change in entropy in reversible and irreversible processes, Principle of increase of entropy, concept of absolute temperature, introduction to third law of thermodynamics Availability : Available and Unavailable Energy		CO2

3	Ideal Gas Properties and Processes		
	Ideal Gas Laws, Equation of State, Universal Gas constant and ideal Gas constant Various processes, p-v and T-s diagrams, Calculations of heat transfer, work done, internal energy, Change in entropy and enthalpy.	6 Hrs.	CO3
4	Air Compressor		
	Reciprocating Air Compressor: Applications of compressed air, single stage compressor without clearance and with clearance volume, volumetric efficiency, isothermal efficiency, adiabatic efficiency, effect of clearance volume, free air delivery, actual indicator diagram for air compressor, Multi staging of compressor(Two Stage only), optimum intermediate pressure, intercooler, after Cooler, Capacity control of compressors. Introduction to pre filters, after filters, Air dryers, Reservoir and Instrumentation for Air Compressor.		CO4
5	Properties of Pure Substance		
	Formation of steam, phase-change phenomenon of a pure substance, Properties of steam, Use of Steam Tables, Study of P-v, T-s diagram. Mollier diagram for steam, Dryness fraction of steam and its determination, Study of steam calorimeters (Separating and throttling calorimeter only) Vapour Power Cycle :- Rankine cycle.(superheated steam & Reheating)	6 Hrs.	CO5
6	Steam Generators		
	Steam Generators: Classification, Constructional details of low pressure boilers, (water tube boiler & fire tube boiler) Primary Features of high pressure boilers, Boiler mountings and accessories, Introduction to IBR Act, Boiler performance, Specific Steam Consumption, Calculations-Equivalent Evaporation, Boiler efficiency, Heat balance Sheet	6 Hrs.	CO6

Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Thermodynamics: An Engineering Approach	Yonus A Cengel and Michale A Boles	McGraw Hill Education	
2.	Fundamentals of Engineering Thermodynamics	Moran & Shapiro	John Wiley & Sons	
3.	Fundamentals of Thermodynamics	Sonntag, Borgnakke & Van Wylen	John Wiley & Sons Inc	

4.	Basic Engineering Thermodynamics	Rayner Joel	AWL-Addison Wesley
5.	Engineering Thermodynamics	D.B. Spalding and E.H Cole	Arnold Publisher
6.	Thermal Engineering	Domkundwar, Kothandaraman and Domkundwar	Dhanpat Rai Publishers
7.	Engineering Thermodynamics	P. K. Nag	Tata McGraw Hill Publications
8.	Engineering Thermodynamics	R.K. Rajput	Laxmi Publications Pvt Ltd, 3rd Edition
9.	Applied Thermodynamics	Onkar Singh	New Age International Publishers
10.	Thermal Engineering	P. L Ballaney	Khanna Publishers
11.	Thermal Engineering	Sadhu Singh	Pearson India Education
12.	Thermodynamics	C.P. Arora	Tata McGraw Hill

ENGINEERING MATHEMATICS (BS202)

Teaching Scheme	Examination Scheme
Lectures: 03 Hrs./ Week	CIA : 40 Marks
Tutorials: 01 Hrs./ Week Total: 100 Marks	End Sem Exam: 60 Marks Credits: 04

COURSE OBJECTIVES

- 1 To make students familiarize with concepts and techniques of vector calculus, probability and differential calculus.
- 2 The intent is to furnish them with the techniques to understand engineering mathematics and its applications that would develop logical thinking power, useful in their disciplines.

COURSE OUTCOMES: At the end of the course, learner will be able to

COs	Course Outcomes	Bloom's Taxonomy		
COS	After successful completion of this course student will be able to	Level	Descriptor	
CO1	Apply statistical methods for Analysis of data and calculate correlation and regression.	3	Apply	
CO2	Calculate probability using various probability distribution.	3	Apply	
CO3	Determine solution of Differential equations usingFourier transform technique.	3	Apply	
CO4	Calculate directional derivative, divergence and curl of vector function.	3	Apply	
CO5	Determine vector integration with the help of Green's theorem, Stoke's theorem, Gauss's theorem	3	Apply	
CO6	Determine solution of partial differential equationsappearing inengineering	3	Apply	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	1	-	-	1	1	1	-	-
CO2	3	2	-	-	1	-	-	1	1	1	-	-
CO3	3	2	-	-	-	-	-	1	1	1	-	-
CO4	3	2	-	-	-	-	-	1	1	1	-	-
CO5	3	2	-	-	-	-	-	1	1	1	-	-

$ CO6 _{3} _{3} _{3} _{-} _{-} _{-} _{-} _{-} _{-} _{-} _{-$	CO6	3	3	-	-	-	-	-	1	1	1	-	-
---	-----	---	---	---	---	---	---	---	---	---	---	---	---

COURSE CONTENTS

Unit-I	Statistics Data analysis, Histogram, Frequency tables, bar diagrams,	No.of Hours	COs
Unit-1	histograms, Mean, Standard Deviation, Moments, Skewness and Kurtosis, Correlation, Regression lines.	07	1
Unit-II	Probability	No.of Hours	COs
	Introduction of Probability, Probability mass function, Binomial distribution, Poisson distribution, Normal distribution, Exponential distributions.	07	2
	Fourier Transform	No. of Hours	COs
Unit-III	Basic Concept of Fourier series, Definition of Fourier transform, Fourier transform of exponential and hyperbolic functions, Unit step function, Dirac delta functions, Solution of differential equations using Fourier transform.	08	3
Unit-IV	Vector Differentiation Vector Differentiation, Gradient of scalar function, Divergence and	No. of Hours	COs
	curl, Vector Identities and stream line.	06	4
Unit-V	Vector Integration Line and Surface integrals, path dependence, statements and	No. of Hours	COs
	Illustrations of Green, stokes and Gauss-Divergence theorem.	06	5
	Applications of Partial Differential Equations	No. of	C.O.s
Unit-VI	Applications of Partial Differential Equations Separation of variables; solutions of one dimensional diffusion	No. of Hours	COs

- 1. B. S. Grewal, Higher Engineering Mathematics, 42/e, Khanna Publishers, 2012, ISBN-13: 978-8174091154.
- 2. S.P. Gupta, Statistical Methods, 28th Edition, Sultan Chand and Sons., New Delhi, 1997
- 3. H. K. Das, Engineering Mathematics, S Chand, 2006, ISBN-8121905209
- 4. P. C. Biswal, Probability and Statistics, PHI, New Delhi, 2012, ISBN-9788120331402 Lib-56298
- 5. S.P. Gupta, Statistical Methods, 28th Edition, Sultan Chand and Sons., New Delhi, 1997

References

- 1. K.A. Stroud & D. S. Booth, Advanced Engineering Mathematics, Industrial Press, 5/e, 2011, ISBN-9780831134495
- 2. P. C. Matthews, Vector Calculus, Springer, 2/e, 2012, ISBN-9783540761808
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, 9/e, 2013, ISBN-13: 978-0471488859.
- 4. John A. Rice, Mathematical Statistics and Data Analysis, International Thomson Publication, 1995, IBSN-0534209343

STRENGTH OF MATERIALS (ME 203)

Т	eaching Scheme	Examina	ation Scheme
Lectures:	3 Hrs. / Week	CIA	40 Marks
Practical:	-	End Sem Exam:	60 Marks
Credits:	3	Total:	100 Marks

Prerequisite Course: Applied Mechanics, Engineering Mechanics

Course Objectives:

- 1. To study the concepts of stress, strain, principal stresses and principal planes.
- 2. To study the concept of shearing force and bending moment due to external loads in determinate beams.
- 3. To compute slopes and deflections in determinate beams.
- 4. To determine stresses and deformation in circular shafts due to torsion.
- 5. To determine safe load for columns for different end conditions.
- 6. To determine principal stresses and strains developed in mechanical structures.

Course Outcomes (COs): At the end of this course, students will be able to

СО	Statements	Bloon	ns Taxonomy
		Level	Descriptor
CO1	Solve problems based on stresses and strains for engineering materials	3	Apply
CO2	Compute shear force and bending moment diagrams for determinate beams due to external loads	3	Apply
CO3	Differentiate between the bending stresses, shear stresses and their distribution diagrams	4	Analyze
CO4	Determine slope and deflection due to external loads in determinate beams.	3	Apply
CO5	Differentiate between the torque transmitting capacity of the shaft on the basis of strength and rigidity.	4	Analyze
CO6	Calculate the principal stresses and strains developed in	3	Apply

mechanical structures.		
------------------------	--	--

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	2	2	-	2	-	-	2	2	2	-	2	2	-	-
CO2	2	2	2	-	3	-	-	2	2	2	-	2	2	-	-
CO3	3	3	3	-	3	-	-	2	2	2	-	2	2	-	-
CO4	2	3	2	-	3	-	-	2	2	2	-	2	2	-	-
CO5	3	2	2	-	3	-	-	2	2	2	-	2	2	_	-
CO6	3	3	2	-	3	-	-	2	2	2	-	2	2	_	-

Course Contents

Uni t	Contents	No. of Hours	COs
1	Linear Elasticity - Material Behavior		
	Stress, strain, types of stresses, Stress-strain diagram for ductile and brittle materials, Hooke's law, Poisson's ratio, Modulus of Elasticity, Modulus of Rigidity, Bulk Modulus. Interrelation between elastic constants, factor of safety, Margin of safety	6 Hrs.	CO1
	Thermal stresses and strains, Stress-strain-temperature relationships in thin- walled pressure vessels		
2	Forces and Moments Transmitted by Slender Members		
	Shear force and bending moment diagrams for statically determinate beams due to concentrated load, uniformly distributed load and couple, Relationship between rate of loading, shear force and bending moment diagrams	6 Hrs.	C02
	Maximum bending moment and point of contra shear and contra flexure.		
3	Bending and Shear Stresses		
	Bending stresses: Theory of simple bending, assumptions, derivation of flexural formula, second moment of area for circular, hollow, rectangular, I, T sections with respect to centroidal and parallel axes, bending stress distribution	6 Hrs.	C03

	diagrams.		
	Shear stresses: Derivation of shear stress distribution formula, shear stress distribution diagrams for circular, hollow, rectangular, I, T sections.		
4	Slope and Deflection of Beams		
	Slope and deflection of determinate beams, double integration method, Macaulay's method, derivation of formula for slope and deflection for standard cases.	6 Hrs.	C04
5	Buckling and Torsion		
	Buckling of columns: Derivation of Euler's formula for buckling load for column with hinged ends, concept of equivalent length for end conditions-both ends hinged, both ends fixed, one end hinged and one end fixed, Rankine's formula	6 Hrs.	C05
	Torsion: Stresses, strain and deformations in determinate homogeneous shafts of solid and hollow circular section and subjected to twisting moment, derivation of torsion equation.		
6	Principal Stresses and Strains		
	Principal stresses and strains: Normal and shear stresses on any oblique plane. Derivation of expression for principal stresses and maximum shear stress.	6 Hrs.	CO6
	Graphical solution using Mohr's circle of stresses.		

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	A Textbook of Strength of Materials	R K Bansal	Laxmi Publications	6th Edition
2.	Strength of Materials	S.S. Rattan	Tata McGraw Hill Education (India) Pvt.Ltd., 2nd Edition, 2010	
3.	Strength of material	Ramamurtham	Dhanpat Rai Publication	
4.	Mechanics of Solids	S.S. Bhavikatti	The New Age International Publishers	

5.	Strength of material	B.K. Sarkar	Tata McGraw-Hill Education Publication	620.12
6.	Strength of materials	R.K. Rajput	S. Chand Publications	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Mechanics of Materials	Ferdinand P. Beer, E. Russell Johnston and Jr. John T. DeWolf	Tata McGraw-Hill, Sixth Edition, 2012	
2.	Strength of Materials	G. H. Ryder	Macmillan Pub	
3.	Engineering Mechanics of Solids	E.P. Popov	Prentice Hall Publication	
4.	Strength of materials	Singer and Pytel	Harper and row Publication	
5.	Mechanics of Materials	Andrew Pytel & Jaan Kiusalaas	Global Engineering	
6.	Mechanics of Materials	R. C. Hibbeler	Prentice Hall Publication	

MANUFACTURING PROCESSES (ME204)

	Teaching Scheme	Examin	ation Scheme
Lectures:	3 Hrs. / Week	CIA	40 Marks
Practical:	-	End Sem Exam:	60 Marks
Credits:	3	Total:	100 Marks

Prerequisite Course: (Basic mechanical Engineering, Mathematics, Engineering graphics)

Course Objectives:

- 1. To understand basics of foundry processes, pattern making and sand casting, die casting
- 2. To understand various metal forming processes such as forging, rolling, extrusion and wire drawing
- 3. To study different types of plastic molding processes.
- 4. To study various metal joining processes, their parameters and applications.
- 5. To understand various sheet metal working operations to design dies.
- 6. To study various types of Additive manufacturing processes.

Course Outcomes (COs): At the end of the course, learner will be able to

COr	Comune Outromos	Blooms Taxonom			
COs	Course Outcomes	Level	Descriptor		
CO1	Calculate solidification time of casting.	3	Apply		
CO2	Calculate amount of forces acting and work done during forming processes.	3	Apply		
CO3	Compare various types of plastic processing methods.	4	Analyse		
CO4	Differentiate various types of joining processes.	4	Analyse		
CO5	Design dies for sheet metal working operations.	3	Apply		
CO6	Describe types of additive manufacturing processes.	2	Understand		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	-	2		1	-	2	-	-	2	3	-
CO2	2	2	2	1	-	-	-	-	-	-	-	-	-	3	-
CO3	1	-	-	-	-	1	2	2	-	-	-	-	2	3	-
CO4	2	-	-	-	-	2	2	2	-	2	3	-	-	3	-
CO5	2	3	3	2	-	-	-	-	-	-	-	-	-	3	-
CO6	2	-	-	-	2	-	-	-	-	2	-	-	2	3	-

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

Course Contents

Uni t	Contents	No. of Hour s	COs
1	Casting Processes		
	 SAND CASTING – Pattern- types, material and allowances, Molding sand-types, properties and testing Molding – types, equipment's, tools and machines, Core – types and manufacturing, Gating system and Riser – types and design (Numerical), Heating and pouring, cooling and solidification- process and time estimation (Numerical), Defects and remedies, Inspection techniques. Die casting, Investment casting, Centrifugal Casting, Continuous Casting. Safety measures and professional ethics. 	08 Hrs.	CO1
2	Metal Forming Processes		
	 Hot and Cold Working – Concepts and comparative study, Material behavior in metal forming, friction and lubrication in metal forming Rolling – Types of rolling mills, flat rolling analysis, power required (Simple Numerical). Forging – Types, process parameter, Analysis of open die forging (Numerical).Safety measures. Extrusion – Types, process parameter, Extrusion dies, Shape factor (Numerical), Drawing – Wire drawing and its analysis (Numerical), tube drawing 	08 Hrs.	CO2

3	Plastic Processing		
	Molding – Compression molding, Transfer molding, Blow molding, Injection molding – Process and equipment. Extrusion of Plastic – Type of extruder, extrusion of film, pipe, cable and sheet Thermoforming – Principle, pressure forming and vacuum forming. Safety measures and case study on impact of plastic processing on environment. Professional ethics.		СО
4	Joining Processes		
	 Surface preparation , types of joints. Welding Classification, Defects ,Applications , safety measures and case study on impact of welding on environment. Professional ethics. Gas welding - Oxy acetylene gas welding, Hydrogen gas welding. Arc welding - Metal arc welding(SMAW), Gas metal arc welding, (MIG, MAG) Tungsten inert gas welding, (TIG) Submerged arc welding,(SAW) Flux cored arc welding(FCAW), Electrode slag metal arc welding, etc Resistance welding - Resistance but welding, seam welding, spot welding, percussion welding. Solid state welding - Forge welding, Friction welding, Pressure welding etc 	08Hrs	CO4
5	Sheet Metal Working		
	Types of sheet metal operations, Types of dies and punches, material for dies and punches, Die design for Progressive and Drawing Die , clearance analysis, center of pressure, blank size determination (Numerical), strip layout, sheet utilization ratio (Numerical), methods of reducing cutting forces.	08Hrs	CO5
6	Additive manufacturing Processes		
	Definition, need, raw materials, types of processes: Photopolymerization, Binder jetting, Material extrusion, Powder Bed Fusion, Sheet Lamination and Direct Energy Deposition. Limitations, strengths Programming methods.	06Hrs	CO6

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Elements of workshop Technology Vol. I &II	Hajara Choudhari, Bose S.K	Asian Publishing House	
2.	Fundamentals of Manufacturing Engineering	D. K. Singh	Ane's Books. Pvt. Ltd.	
3.	Manufacturing technology	P.N.Rao	The Mc Graw hill companies	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Metal Casting - Computer Aided	B. Ravi	Prentice Hall of	
	design and analysis		India	
2.	Casting: An analytical approach	Reikher	Springer	
			publications.	
3.	Rapid tooling guidelines for sand	Wang	Springer	
	casting		publications.	
4.	Degormos Materials and process in	J. T. Black	John Willey and	
	manufacturing		sons	
5.	Fundamentals of modern	M.P Grover	Materials and	
	manufacturing: Materials and systems		systems	
6.	Material and Processes in	DeGarmo E P and		
	Manufacturing	J T Kohser R A		
7.	Injection Mold Design	David O Kazmer		
8.	Maufactucring processes for	Serope Kalpakjian		
	Engineering materials	Stevn		
9.	Additive manufacturing Processes	John O. Milewski	Springer	
			publications.	
L				

LAB-I MACHINE DRAWING AND GEOMETRICAL MODELLING (ME206)

Tea	ching Scheme	Examination Scheme			
Lectures:	-	PR Exam	50 Marks		
Practical:	4 Hrs./ Week				
Credits:	2				

Prerequisite Course: Basic Mechanical Engineering, Engineering Graphics

Course Objectives:

- 1. To understand requirements of industrial drawings.
- 2. To read, understand and explain basic Geometric Dimensioning & Tolerancing concepts.
- 3. To apply various geometric and dimension tolerances based on type of fit
- 4. To understand requirements for manufacturing and assembly

Course Outcomes (COs): At the end of the course, learner will be able to

COs	Course Outcomes	Blooms Taxonomy			
	Course Outcomes	Level	Descriptor		
CO1	Understand the standards used in Machine Drawing and IS Conventions.	2	Understand		
CO2	Apply limits, Fits and Tolerance, Surface Finish Symbols In Drawing of machine parts.	3	Apply		
CO3	Demonstrate Geometrical Dimensions and Tolerances for machine parts	2	Understand		
CO4	Apply modelling and assembly commands to develop 3D models of any machine parts	3	Apply		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	-	-	3	3	2	-	2	2	-	-
CO2	3	1	1	-	-	-	-	3	3	2	-	2	2	-	-
CO3	3	1	1	-	3	-	-	3	3	2	-	2	2	-	-
CO4	3	1	1	-	3	-	-	3	3	2	-	2	2	-	-

Course Contents

SN	Contents	No. of	COs
		Hours	
1	IS Conventions		
	Introduction to machine drawing, Dimensioning technique for machine components, Conventional representation of machine components as per IS code: SP-46 such as screw threads, springs, gears, bearing, tapped holes, knurling, splined shafts, tapers, chamfers, countersunk and counter bores, keys, & welded joints, Surface Roughness Introduction, terminology, machining symbol with all parameters, roughness values (Ra) indicating surface roughness on drawing.		CO1
2	Limits, Fits and Tolerances		
	Definitions applied to tolerances, types of tolerance, types of fits, fit system. Geometrical tolerances – Nomenclature, tolerance frame, types of geometrical tolerances & their symbols, indicating geometric tolerances on drawing. Interference and clearance fit calculation for 2 part assembly.		CO2
3	Geometrical Dimensions and Tolerances		
	Importance of GD&T, difference between position tolerance and plus minus tolerance , datum selection process from assembly & manufacturing approach, concept & calculation of MMC,LMC,RFS, concept & reading of feature control frame, tolerance selection criteria for ideal assembly approach, ASME Standards: ASME Y14.5, Rules.		CO3
4	Part Modelling and Assembly		
	Introduction to Graphic User Interface of modeling software, Sketching of simple machine parts in 2D, Parametric solid modeling (3D) using any modeling software. Dimensional and Geometrical Constraints, Assembly of Machine Components, examples- Wheel support assembly, Bench-vice, Universal coupling, Butterfly valve etc. using bottom up approach.		CO4

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Journal (LAB)

Practical:

The student shall complete the following Practical in laboratory.

Learner will demonstrate skills to communicate drawings as per industry standards:

SN	Content	Duration
1	One A2 size sheet based on various IS conventions (Manual Drawing).	[08 Hr.]
2	Two A2 size sheets: one on Assembly & other on Details of simple mechanical system (By using AUTODesk or Cadian software).	[10 Hr.]
3	Interference and clearance fit calculation for 2 part assembly (Numericals)	[04 Hr.]
4	Tolerance selection criteria for ideal assembly approach (Numericals)	[04 Hr.]
5	Solid Modeling of Machine Components using Modeling Software.	[06 Hr.]
6	Assembly and Production Drawing of Machine Parts using Modeling Software.	[10 Hr.]
7	Drawing views from assembly.	[04 Hr.]

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Standards: ASME Y14.5 - 2018			
2.	Machine Drawing	Narayana, K. L., Kannaiah, P., Venkata Reddy, K.	New Age International Publishers, New Delhi, India, ISBN-13: 978- 8122440546	
3.	Machine Drawing	Bhatt, N. D. and Panchal, V. M	Charotar Publishing House Pvt. Ltd, Anand, India, ISBN-13: 978-9385039232	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Geometric Dimensioning and	Cogorno, G. R.,	3rd edition, McGraw-	
	Tolerancing for Mechanical Design		Hill Education	
2.	Geometric Dimensioning and	Blokdyk,	5STARCooks	
	Tolerancing: A Complete Guide	Gerardus,		
3.	Standards: ISO/TR 23605:2018, ISO			
	1101:2017, SP 46, IS 15054(2001)			

LAB-II FOUNDATIONS OF IOT (ME207)

Tea	ching Scheme	Examination Scheme			
Practical:	2 Hrs./ Week	TW	25 Marks		
Credits:	1	Total:	25 Marks		

Prerequisite Course: (if Any)

Course Objectives:

- 1. To identify and study different control system components.
- 2. To understand simulation on controllers.
- 3. To demonstrate working of different actuating systems and sensors.
- 4. To learn and demonstrate IoT

Course Outcomes (COs): At the end of the course, learner will be able to

COs	Course Outcomes	Bloom's Taxonomy			
0.03		Level	Descriptor		
CO1	Select sensors for automation system	2	Understand		
CO2	Understand the components of IoT system and ThingSpeak	2	Understand		
CO3	Simulate circuits in simulation software tinker CAD	3	Apply		
CO4	Understand programing of Arduino in Arduino IDE for actuators	2	Understand		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			PSO 2	
CO1	3	2	3	2	3	2	2	-	1	-	-	1	-	-	2
CO2	3	2	3	2	3	2	1	-	1	-	-	-	-	-	2
CO3	3	2	3	2	3	2	1	-	1	-	-	1	-	-	2
CO4	3	2	3	2	3	2	2	-	1	-	-	1	-	-	2

List of Practical

Sr.N 0	Name of Practical	Hrs	Course Outco me
1	Determination of Ambient Temperature using Arduino	2	CO1
2	Determination of light intensity using Photo-resistor and LED using Arduino	4	CO1
3	Generation of temperature data using IoT based ThingSpeak,Arduino and ESP8266 and LM32	4	CO2
4	Generation of humidity data using IoT based ThingSpeak,Arduino and ESP8266	4	CO2
5	Identification of gas leakage using gas sensor	2	CO3
6	Detection of obstacle using ultrasonic sensors and simulate in TinkerCAD	2	CO3
7	Classification of Vibration level using Accelerometer, Arduino	4	CO4
8	Controlling speed of stepper motor using Arduino	2	CO4

Text Books

Sr.	Title of Book	Authors	Publication House	Accession No
No.				
1.	Designing IoT	Mcewen Adrian	Wiley	63818-N
2.	IoT	Bagha Arshdeep	Universities Press	64434-N
3.	Getting Started with IoT	Cuno Pfister	O. Reilly	59825-N,59826-N
4.	IoT connecting objects with Web	Chauchi Hakima	Willey	63310 to 63314-N
5.	IoT hands on Approach	n Approach Bagha and modisetty		63299-N to 63303-I
6	ΙοΤ	Paj Pathari	Universities Press	64303-N

LAB-III STRENGTH OF MATERIALS [ME208]

Teaching Scheme Practical: 2 Hrs./week Credits: 1 Examination Scheme Oral: 25 Marks Total Marks: 25 Marks

Pre-requisite Course: Applied Mechanics, Mathematics

Course Objectives :

- 1. To conduct tension test on the given mild steel rod for determining mechanical properties
- 2. To determine the ultimate stress to which the specimen can withstand
- 3. To conduct shear test on given specimen under single and double shear.
- 4. To determine the Young's modulus of the given specimen by conducting bending test.
- 5. To use software to verify theoretical values

Course Outcomes (COs): At the end of the course, learner will be able to

Course Outcome	Statements	Level	Descript or
CO1	Conduct various tests to determine mechanical properties of the given specimen	3	Apply
CO2	Plot SFD, BMD and slope-deflection curves	3	Apply
CO3	Compare analytical solution of principal stresses with graphical solution.	3	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	3	3	2	-	2	3	3	-	3	2	-	-
CO2	3	-	-	3	3	2	-	2	3	3	-	3	2	-	-
CO3	3	-	-	3	3	2	-	2	3	3	-	3	2	-	-

LIST OF PRACTICALS:

Sr. No.	Title	СО	РО	PSO
1	Tension test on a ductile material to determine its mechanical properties.	1		1
2	Tension test on a Aluminium material to draw stress-strain diagram and to evaluate its ultimate stress	1		1
3	To determine Compressive strength of materials	1		1
4	To determine Shear strength of mild steel material under single and double shear	1	1, 4,5,	1
5	To find the values of bending stresses and young's modulus of the material of a simply supported beam	1	6,9, 10,12	1
6	Plotting of shear force and bending moment diagrams for different boundary conditions and loading conditions of beam (using software)	2		1
7	Comparison of numerical and analytical analysis on Slope and deflection (by using software)	2		1
8	Determination of Principal stresses by graphical method and verification through analytical method	2		1

LAB IV MANUFACTURING PROCESS (ME209)

	Teaching Scheme	Exa	mination Scheme
Lectures:	-	Pr Work:	25 Marks
Practical:	2 Hrs./ Week		
Tutorials :	-		
Credits:	1	Total:	25Marks

Prerequisite Course: (Basic mechanical Engineering, Mathematics, Engineering graphics, Manufacturing Processes)

Course Objectives:

- 1. To select appropriate lathe machine process parameters and perform operations turning, facing, taper turning and threading.
- 2. To select appropriate process parameter for arc welding.
- 3. To understand sand casting, gating system, types of cores, patterns.
- 4. To print 3D component on additive manufacturing (3D printing).

Course Outcomes (COs): At the end of the course, learner will be able to

CO's	Course Outcomes	Bloom	is Taxonomy
0.03		Level	Descriptor
CO1	Perform lathe operation and study the corresponding set up parameters.	3	Apply
CO2	Select appropriate process parameter for arc welding.	3	Apply
CO3	Understand the basic principles and concepts of casting processes and identify common casting defects with remedies.	2	Understand
CO4	Perform an operation on additive manufacturing machine	3	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	-	-	2	2	2	1	-	2	3	-	-
CO2	3	3	2	3	-	-	2	2	2	1	-	2	3	-	-
CO3	3	3	2	3	-	-	2	2	2	3	2	2	3	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	-	-	-

Course Contents

Job s	Contents	COs
1	Manufacturing of any one job consisting of all the lathe operations.	CO1
2	Job on TIG/ MIG welding.	CO2
3	Demonstration of Sand Moulding Process	CO3
4	Create a mechanical component using Additive manufacturing (3D printing)	CO4

Text Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	Elements of Workshop Technology	S. K. Hajra Choudhary, A. K. Hajra Choudhary	Media promoters	
2.	A Course in Workshop Technology Vol. II	B. S. Raghuwanshi	Dhanpat Rai & CO	
3.	Workshop Technology Part 1, 2 and 3	W. A. J. Chapman	Taylor & Francis	
4.	Manufacturing Process – 2,	Anul Goel	Technical Publication	
5.	ProductionTechnology(Manufacturing Processes)	P C Sharma,	S Chand Publication	
6.	Additive manufacturing Processes	John O. Milewski	Springer publications	

Reference Books

Sr. No.	Title of Book	Authors	Publication House	Accession No
1.	HMT Handbook for Production Technology		Tata McGraw-Hill,	
2.	Metal Casting – Computer Aided design and analysis	B. Ravi	Prentice Hall of India	
3.	Casting: An analytical approach	Reikher	Springer	
4.	Rapid tooling guidelines for sand casting	Wang	Springer	
5.	Degormos Materials and process in manufacturing	J. T. Black	John Willey and sons	

MLC III - CONSTITUTION OF INDIA (MC211)

Teaching Scheme Lectures: 01 Hrs. / Week Credit : No Credit

Prerequisite Course: (if Any)

Course Objectives: (Please specify Six Objectives)

- 1 To study the historical background, salient features and preamble of Indian constitution
- 2 To study the provision of fundamental right in the Indian constitution.
- 3 To study the directive principle of state policy and fundamental duties.
- 4 To study the system of government through parliamentary and federal system.
- 5 To understand the formation, structure and legislative framework of central government.
- 6 To understand the formation, structure and legislative framework of state government.

Course Outcomes (COs): At the end of the course, learner will be able to

COs	Course Outcomes	Blooms 7	ſaxonomy
No	Course Outcomes	Level	Descriptor
CO1	Describe background, salient features of constitution of India	1	Remember
CO2	Explain the system of government, it's structure and legislative framework.	2	Understand
CO3	Apply the fundamental rights and duties in their life	3	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						1						
CO2						2						
CO3						2						

Course Contents

Unit No.	Unit Title	No. of Hrs.	COs
Ι	Introduction to Constitution of India	07	
	Historical background, Salient features, Preamble of constitution		
II	Fundamental Rights	05	
	Features of fundamental rights, Basic rights 1. Right to equality; 2. Right to freedom; 3. Right against exploitation; 4. Right to freedom of religion; 5. Cultural and educational rights; 6. Right to property; 7. Right to constitutional remedies		
III	Directive principle of State Policy (B) Fundamental Duties	05	
	Features of directive principle, Classification of directive principle, Criticism of directive principle, Utility of directive principle, Conflict between Fundamental rights and directive principle		
	List of fundamental duties, Features of fundamental duties, Criticism of fundamental duties, Significance of fundamental duties, Swaran Singh Committee Recommendations		
IV	System of Government	05	
	Parliamentary system: Features of parliamentary government, Features of presidential government, merits and demerit of Parliamentary system, Federal system: Federal features of constitution, unitary features of constitution, Centre and state relation: Legislative relation, administrative relations and financial relation, Emergency provision: National emergency, Financial emergency and criticism of emergency provision		
V	Central Government	05	
	President: Election of president, powers and functions of president, and Veto power of president, Vice-president: Election of vice-president, powers and functions of vice-president, Prime minister: Appointment of PM, powers and functions of PM, relationship with president, Central council of ministers: Appointment of ministers, responsibility of ministers, features of cabinet committees, functions of cabinet committees, Parliament: Organization of parliament, composition of the two houses, duration two houses, membership of parliament, session of parliament, joint sitting of two houses, budget in parliament, Supreme court (SC): Organization of supreme court, independence of supreme court, jurisdiction and powers of supreme court		

VI	State Government	05					
	Governor: Appointment of governor, powers and functions of governor, constitutional position, Chief minister: Appointment of CM, powers and functions of CM, relationship with governor, State council of ministers: Appointment of ministers, responsibility of ministers, cabinet, High court (HC): Organization of HC, independence of HC, jurisdiction and powers of HC, Sub-ordinate court: Structure and jurisdiction, LokAdalats, Family court, Gram Nyayalayas						
Reference	e Book: Polity for Civil Service Examination, M Laxmikanth, Mc GrawHill Education, Fifth E	dition.					
	 Introduction to the Constitution of India, Durga Das Basu, LexisNexis, 22nd Edition 						