Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)

## DECLARATION

We, the Board of Studies (Electrical Engineering Department), hereby declare that, we have designed the four year structure of Electrical Engineering and curriculum of Semester III of Curriculum Pattern 2020 w.e.f. A.Y 2021-2022 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

BoS Chairman Head of Dept. Dept.of Electrical Engg. Sanjivani College of Engineering Kopargaon 423603

Approved by

cademics

Director



#### S. Y. B. Tech

2020 Pattern college of Eng

## **COURSE STRUCTURE- 2020 PATTERN** SECOND YEAR B. TECH. ELECTRICAL ENGINEERING

|               |       |                                                                 |    |      | SEM                | ESTER-I        | 11  |                         |     |          |             | 1  | Engine |  |  |  |
|---------------|-------|-----------------------------------------------------------------|----|------|--------------------|----------------|-----|-------------------------|-----|----------|-------------|----|--------|--|--|--|
|               |       | Course                                                          |    |      | ching !<br>lours/v | Scheme<br>week |     | Evaluation Scheme-Marks |     |          |             |    |        |  |  |  |
| Cat.          | Code  | Title                                                           | L  | Т    | P                  | Credits        | ISE | Theory                  | CA  | OR       | PR          | TW | Total  |  |  |  |
| PCC           | EE201 | Material Science                                                | 3  | -    | -                  | 3              | 30  | 50                      | 20  | -        | -           | -  | 100    |  |  |  |
| BSC           | BS202 | Mathematics III                                                 | 3  | 1    | -                  | 4              | 30  | 50                      | 20  | -        | -           | -  | 100    |  |  |  |
| PCC           | EE203 | Electrical<br>Measurements and<br>Instrumentation               | 4  | -    | -                  | 4              | 30  | 50                      | 20  | -        | -           | -  | 100    |  |  |  |
| PCC           | EE204 | Analog and Digital<br>Electronics                               | 3  |      | 120                | 3              | 30  | 50                      | 20  | -        | -           | -  | 100    |  |  |  |
| HSMC          | HS205 | Universal Human<br>Values & Ethics                              | 3  | 1201 | -                  | 3              | 30  | 50                      | 20  | <b>1</b> | -           | -  | 100    |  |  |  |
| HSMC          | EE206 | General Proficiency                                             | -  | - 1  | 2                  | 1              | -   |                         |     | -        | -           | 50 | 50     |  |  |  |
| LC            | EE207 | Material Science<br>Laboratory                                  | -  | -    | 2                  | 1              | -   | -                       | -   | 50       | -           | -  | 50     |  |  |  |
| LC            | EE208 | Electrical<br>Measurements and<br>Instrumentation<br>Laboratory | -  | -    | 2                  | 1              | -   | -                       | -   | -        | 50 <u>.</u> |    | 50     |  |  |  |
| LC            | EE209 | Analog and Digital<br>Electronics Laboratory                    | -  | -    | 2                  | 1              | -   | -                       | -   | -        | 50          | -  | 50     |  |  |  |
| MC            | MC210 | Mandatory Course-III                                            | 2  | -    | -                  | No             | -   | -                       | -   | -        | -           | -  | -      |  |  |  |
| Real Property | 5     | Total                                                           | 18 | 1    | 8                  | 21             | 150 | 250                     | 100 | 50       | 100         | 50 | 700    |  |  |  |

|                            | Abbreviations                                                                                                                                                                            |                                                                                                                                                                                                                       |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Abbreviation                                                                                                                                                                             | Full Form                                                                                                                                                                                                             |
| Basic Science Course       |                                                                                                                                                                                          | Mandatory Course                                                                                                                                                                                                      |
| Engineering Science Course |                                                                                                                                                                                          | Professional Core Course                                                                                                                                                                                              |
| Humanities/Social          | PEC                                                                                                                                                                                      | Professional Elective Course                                                                                                                                                                                          |
| Induction Program          | OEC                                                                                                                                                                                      | Open Elective Course                                                                                                                                                                                                  |
| Lecture                    |                                                                                                                                                                                          | Laboratory Course                                                                                                                                                                                                     |
| Tutorial                   |                                                                                                                                                                                          | Laboratory Course                                                                                                                                                                                                     |
| Practical                  |                                                                                                                                                                                          | Continuous Assessment                                                                                                                                                                                                 |
|                            |                                                                                                                                                                                          | End Semester Oral Examination                                                                                                                                                                                         |
|                            |                                                                                                                                                                                          | End Semester Practical Examination                                                                                                                                                                                    |
| Category                   |                                                                                                                                                                                          | Continuous Term Work Evaluation<br>Project                                                                                                                                                                            |
|                            | Full FormBasic Science CourseEngineering Science CourseHumanities/SocialSciences/Management CourseInduction ProgramLectureTutorialPracticalIn-Semester EvaluationEnd-Semester Evaluation | Basic Science CourseMCEngineering Science CoursePCCHumanities/SocialPECSciences/Management CourseInduction ProgramInduction ProgramOECLectureLCTutorialCAPracticalORIn-Semester EvaluationPREnd-Semester EvaluationTW |

Sanjivani College of Engineering, Kopargaon

2021-2022

Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)

#### DECLARATION

We, the Board of Studies (Electrical Engineering Department), hereby declare that, we have designed the four year structure of Electrical Engineering and curriculum of Semester IV of Curriculum Pattern 2020 w.e.f. A.Y 2021-2022 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

BoS Chairman Head of Dept. Dept.of Electrical Engg. Sanjivani College of Engineering Kopargaon 423603 Approved by

Dean cademics

Director



#### S. Y. B. Tech

## COURSE STRUCTURE- 2020 PATTERN SECOND YEAR B. TECH. ELECTRICAL ENGINEERI

SEMESTER-IV



| the set of the set | A VALUE AND A VALUE AND |                                                                  |    |   |             | and a set of the set o |                  | ~argaon       |          |         |              |      |       |
|--------------------|-------------------------|------------------------------------------------------------------|----|---|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|----------|---------|--------------|------|-------|
|                    |                         | Course                                                           |    |   | hing sours/ | Scheme<br>week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 1. Wet        | Ev       | ion Sc. | Scheme-Marks |      |       |
| Cat.               | Code                    | Title                                                            | L  | Т | P           | Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Theory        | ,        | OR      | 00           | TW   | Treat |
| PCC                | EE211                   | Numerical Computations<br>with Signals and Systems               | 3  | 1 | -           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>ISE</b><br>30 | <b>ESE</b> 50 | CA<br>20 | - OR    | PR           | - IW | Total |
| PCC                | EE212                   |                                                                  | 3  | 1 | -           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               | 50            | 20       | -       |              | -    | 100   |
| PCC                | EE213                   | Electrical Machines I                                            | 4  | - | -           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               | 50            | 20       | -       | -            | -    | 100   |
| PCC                | EE214                   | Power System I                                                   | 3  | - | -           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               | 50            | 20       | -       | -            | -    | 100   |
| LC                 | EE215                   | Numerical Computations<br>with Signals and Systems<br>Laboratory |    | L | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | -       | 50           | -    | 50    |
| LC                 | EE216                   | Network Analysis<br>Laboratory                                   | -  | - | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | -       | 50           | -    | 50    |
| LC                 | EE217                   | Electrical Machines I<br>Laboratory                              | •. | - | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | -       | 50           | -    | 50    |
| LC                 | EE218                   | Power System I<br>Laboratory                                     | -  | - | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | 50      | -            | -    | 50    |
| PROJ               | EE219                   | Seminar / Mini Project                                           | ÷. | - | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | -       | -            | 50   | 50    |
| PROJ               | EE220                   | Professional<br>Development                                      | -  | - | 2           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | -             | -        | -       | -            | 50   | 50    |
| MC                 | MC221                   | Mandatory Course-IV                                              | 2  |   | -           | No<br>Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                | -             | -        | -       |              | -    | -     |
|                    | A STATE                 | Total                                                            | 15 | 2 | 12          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120              | 200           | 80       | 50      | 150          | 100  | 700   |

MC221 Ma

Mandatory Course-IV

Innovation - Project based - Sc., Tech, Social, Design & Innovation

|              | List of                                         | <b>f</b> Abbreviations |                                    |
|--------------|-------------------------------------------------|------------------------|------------------------------------|
| Abbreviation | Full Form                                       | Abbreviation           | Full Form                          |
| BSC          | Basic Science Course                            | MC                     | Mandatory Course                   |
| ESC          | Engineering Science Course                      | PCC                    | Professional Core Course           |
| HSMC         | Humanities/Social<br>Sciences/Management Course | PEC                    | Professional Elective Course       |
| IP           | Induction Program                               | OEC                    | Open Elective Course               |
| L            | Lecture                                         | LC                     | Laboratory Course                  |
| Т            | Tutorial                                        | CA                     | Continuous Assessment              |
| P            | Practical                                       | OR                     | End Semester Oral Examination      |
| ISE          | In-Semester Evaluation                          | PR                     | End Semester Practical Examination |
| ESE          | End-Semester Evaluation                         | TW                     | Continuous Term Work Evaluation    |
| Cat          | Category                                        | PROJ                   | Project                            |

Sanjivani College of Engineering, Kopargaon





Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Punc)

## DECLARATION

We, the Board of Studies (Electrical Engineering Department), hereby declare that, we have designed the four year structure of Electrical Engineering and curriculum of Semester V of Curriculum Pattern 2020 w.e.f. A.Y 2022-2023 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

**BoS** Chairman

Approved by

Lock cademics

OF ENG Approve



2020 Pattern

of Engin

Electrical Engineering

## **COURSE STRUCTURE- 2020 PATTERN** THIRD YEAR B. TECH. ELECTRICAL ENGINEERI

|      |       | Course                                          |    |        | hing S | Scheme<br>week |     | E      | eme-N | ALTON |     |    |       |
|------|-------|-------------------------------------------------|----|--------|--------|----------------|-----|--------|-------|-------|-----|----|-------|
| Cat. | Code  | Title                                           | L  | 「中心のない | P      | Credits        | ISE | Theory | CIA   | OR    | PŔ  | TW | Total |
| PCC  | EE301 | Microcontrollers And<br>Applications            | 3  | -      | -      | 3              | 30  | 50 ESE | 20    | -     | -   | -  | 100   |
| PCC  | EE302 | Electrical Machines II                          | 3  | -      | -      | 3              | 30  | 50     | 20    |       | -   | -  | 100   |
| PCC  | EE303 | Power System II                                 | 3  | -      | -      | 3              | 30  | 50     | 20    | -     | -   | -  | 100   |
| PCC  | EE304 | Power Electronics                               | 3  | - 1    |        | 3              | 30  | . 50   | 20    | -     | -   | -  | 100   |
| PEC  | EE305 | Professional Elective-I                         | 3. |        | -      | 3              | 30  | 50     | 20    | -     | -   | -  | 100   |
| LC   | EE306 | Microcontrollers And<br>Applications Laboratory | -  | -      | 2      | 1              | -   | -      |       | 25    |     | -  | 25    |
| LC   | EE307 | Electrical Machines II<br>Laboratory            | -  | -      | 2      | 1              | -   | -      | -     | -     | 50  | -  | 50    |
| LC   | EE308 | Power System II Laboratory                      |    | -      | 2      | 5 1            | -   | -      | -     | 25    | -   |    | 25    |
| LC   | EE309 | Power Electronics Laboratory                    | -  | (F)    | 2      | 1              | -   | -      | -     | -     | 50  |    | 50    |
| PRJ  | EE310 | Skill based Credit Course                       | 1  | 1-1    |        | 1              | -   | -      | -     | -     |     | 50 | 50    |
| MLC  | MC311 | Mandatory Learning Course-<br>V                 | 1  | -      | -      | No<br>Credit   |     | -      | -     | -     | -   |    |       |
|      |       | Total                                           | 17 |        | 8      | . 20           | 150 | 250    | 100   | 50    | 100 | 50 | 700   |

SEMESTER- V

| EE305 | Professional Elective-I     | EE305A Renewable Energy Sources                    |
|-------|-----------------------------|----------------------------------------------------|
| EL303 | Trefessional Elective-1     | EE305B Smart Grid                                  |
| MC311 | Mandatory Learning Course-V | MC311A Electrical Energy Conservation and Auditing |

Dews Acnemiy

Sanjivani College of Engineering, Kopargaon

2022-23



Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)



## DECLARATION

We, the Board of Studies (Electrical Engineering Department), hereby declare that, we have designed the four year structure of Electrical Engineering and curriculum of Semester VI of Curriculum Pattern 2020 w.e.f. A.Y 2022-2023 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

#### Submitted by

BoS Chairman

Approved by

Dean Academics







2020 Pattern

Sanji 4 e of Engines

C Electrical Dep

Engineering

## **COURSE STRUCTURE- 2020 PATTERN** THIRD YEAR B. TECH. ELECTRICAL ENGINEERING

| No. States |       | ourse                                                                                                                          | Te    | ach                                                                                                             | ing S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cheme         |              |               | E      | valuati | on Scl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | heme-l | Marks | Care Inter |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|
| Cat.       | Code  | Title                                                                                                                          | u     | Ho                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | veek-         | -            |               | Theory | CIA     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PR     | TŴ    | : Total    |
| ALL BUSH   | EE312 | Power System<br>Operation and Control                                                                                          | 4     |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4             |              | 30            | 50     | 20      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.    | -     | 100        |
|            | EE313 | Feedback Control<br>Systems                                                                                                    | 3     | -                                                                                                               | 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3             | ( <b>1</b> ) | 30            | 50     | 20      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·      | •     | 100        |
| PCC        | EE314 | Electrical Machine<br>Design                                                                                                   | 3     |                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3             | 100          | 30            | 50     | 20      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      | -     | 100        |
| PEC        | EE315 | Professional Elective-<br>II<br>A. Electrical Drives<br>B. Utilization of<br>Electrical Energy<br>C. Electromagnetic<br>Fields | 3     | Contraction of the second s | A CONTRACTOR OF A CONTRACTOR O |               |              | 30            | 50     | 20      | A state of the second s |        |       | 100        |
| HSMC       | HS315 |                                                                                                                                | 2     | 4                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2           | 101<br>2442  | ÷.            | 152-1  | 50      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0    | •     | -          |
| PROJ       | PR310 | 5 IPR & EDP                                                                                                                    | 2     | 1                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2           |              | 1             | 30     | 20      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      | -     | 50         |
| ъс         | EE31  | Power System<br>7 Operation and Control<br>Laboratory                                                                          |       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1           |              |               |        |         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | •     | 25         |
| LC         | EE31  | Feedback Control                                                                                                               |       |                                                                                                                 | P-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2             |              |               |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50     | -     | 50         |
| LC         | EE3   | 19 Electrical Machine<br>Design Laboratory                                                                                     | 11 11 | -                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2             |              |               |        |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 -    | 1     | 25         |
| LC         | EE3   | 20 Programming<br>Laboratory                                                                                                   |       | -                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b> 1131 | 1            | 14<br>14 - 14 |        | -       | And A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51     |       | 50         |
| PRO        | J EE3 |                                                                                                                                |       | -                                                                                                               | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2             | 1            | 1.111         | 1.1    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 50    | 30         |
| ML         | с мс  | Mandatory Learning<br>Course-VI<br>A. PCB Design                                                                               |       | 1                                                                                                               | taire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | lon<br>redit |               |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |       | Pass/Fai   |
| TAL.       |       | Total                                                                                                                          |       | 18.                                                                                                             | 新た                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            | 22           | 12            | 0 23   | 0 15    | 50 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50. 1  | 00 5  | 0 700      |





2022-2023

Sanjivani College of Engineering, Kopargaon



Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)

## DECLARATION

College of Engineering

We, the Board of Studies (Electrical Engineering Department), hereby declare that we have designed the four-year structure of Electrical Engineering and curriculum of Semester VII of Curriculum Pattern 2020 w.e.f. A.Y 2023-2024 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

BoS Chairman

Approved by

Dean



ector



Department of Electrical Engineering

Final Year. B. Tech Electrical Engineering



#### COURSE STRUCTURE- 2020 PATTERN FINAL YEAR B. TECH. ELECTRICAL ENGINEERING

|            |        | Course                                                                                                                                   | T          |      |    | Scheme<br>week | Evaluation Scheme-Marks |        |     |     |    |     |                      |  |  |
|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|----------------|-------------------------|--------|-----|-----|----|-----|----------------------|--|--|
| Cat        | Code   | Title                                                                                                                                    | L          | т    | P  | Credits        | ISE                     | Theory | CA  | OR  | PR | TW  | Total                |  |  |
| PCC        | EE401  | Switch Gear and<br>Protection                                                                                                            | 3          |      |    | 3              | 30                      | 50     | 20  |     |    |     | 100                  |  |  |
| PCC        | EE402  | Control System Design                                                                                                                    | 3          | -    | -  | 3              | 30                      | 50     | 20  | 1.  |    | 1.  | 100                  |  |  |
| PCC        | EE403  | High Voltage<br>Engineering                                                                                                              | 3          |      | •  | 3              | 30                      | 50     | 20  |     |    |     | 100                  |  |  |
| PEC        | EE404  | Professional Elective-<br>III<br>A. Electric and Hybrid<br>Vehicle<br>B. HVDC<br>Transmission Systems<br>C. Digital Signal<br>Processing | 4          |      |    | 4              | 30                      | 50     | 20  |     | -  |     | 100                  |  |  |
| PEC        | EE405  | Professional Elective-<br>IV<br>A. Power Quality<br>B. Transmission and<br>Distribution<br>C. Intelligent Systems<br>with A1 and ML      | 3          | -    |    | 3              | 30                      | 50     | 20  | -   |    |     | 100                  |  |  |
| LC         | EE406  | Switch Gear and<br>Protection Laboratory                                                                                                 | -          | -    | 2  | 1              | -                       | -      | -   | 50  |    | -   | 50                   |  |  |
| LC         | EE407  | Control System Design<br>Laboratory                                                                                                      | <b>.</b> . | •    | 2  | 1              | -                       |        | -   | 50  |    | -   | 50                   |  |  |
| LC         | EE408  | High Voltage<br>Engineering<br>Laboratory                                                                                                | •          | •    | 2  | 1              |                         | -      |     | •   | 50 |     | 50                   |  |  |
| PROJ       | EE409  | Project Stage I                                                                                                                          |            | -    | 6  | 3              | -                       | •      | -   | 50  | -  | 100 | 150                  |  |  |
| MLC        | MC410  | Mandatory Learning<br>Course-VII<br>A. Financially Smart                                                                                 | 1          | -    | -  | Non<br>Credit  |                         |        | -   | -   |    | -   | 150<br>Pass/<br>Fail |  |  |
| × 160 - 15 | ""家书会的 | Total                                                                                                                                    | 17         | 5271 | 12 | 22             | 150                     | 250    | 100 | 150 | 50 | 100 | 800                  |  |  |





OF ENGL G 00:00

Sanjivani College of Engineering, Koparyaon

2023-2024

Page 6 of 41



# (An Autonomous Institute affiliated to SPPU, Pune)

## DECLARATION

We, the Board of Studies (Electrical Engineering Department), hereby declare that, We have designed the four year structure of Electrical Engineering and curriculum of Semester VIII of Curriculum Pattern 2020 w.e.f. A.Y. 2023-2024 as per the guidelines. So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

Dept.of Electrical Engg. Sanjivani College of Englacering Kopargaon 423603

Approved by

Dean Academics

To

100

55

6

B

R

R





San

-

Electrica

Engineerin

gao





Department of Electrical Engineering

#### COURSE STRUCTURE- 2020 PATTERN FINAL YEAR B. TECH. ELECTRICAL ENGINEERING

|      |       | S                                                                                                                                                                                                                                                                                                                          | EME | ST  | R-V              | /111       |         |               |         |       | (      | College of Engines |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------|------------|---------|---------------|---------|-------|--------|--------------------|
| 1    |       | Course                                                                                                                                                                                                                                                                                                                     |     |     | ing Sc<br>urs/we | heme<br>ek | Sel Con | Evalu         | ation S | cheme | -Marks | * Engineering      |
| Cat  | Code  | Title                                                                                                                                                                                                                                                                                                                      | L   | т   | Р                | Cred       | The     | ESE           | OR      | PR    | TW     | Total              |
| OEC  | EE411 | <ul> <li>Open Elective I (NPTEL)</li> <li>A. Sensors and Actuators</li> <li>B. Circuit Analysis for Analog<br/>Designers</li> <li>C. Industrial Automation and<br/>Control</li> <li>D. Problem Solving through<br/>programming in C</li> </ul>                                                                             | 3   |     |                  | 3          | 25      | <u></u><br>75 | -       | -     | -      | 100                |
| OEC  | EE412 | <ul> <li>Open Elective-II (NPTEL)</li> <li>A. Fundamentals of<br/>Semiconductor Devices</li> <li>B. Computer-Aided Design of<br/>Electrical Machines</li> <li>C. Introduction To Industry<br/>4.0 And Industrial Internet<br/>of Things</li> <li>D. Embedded Sensing,<br/>Actuation and Interfacing<br/>Systems</li> </ul> | 3   | -   |                  | 3          | 25      | 75            | -       | •     | -      | 100                |
| OEC  | EE413 | Open Elective III (NPTEL)<br>A. EV - Vehicle Dynamics and<br>Electric Motor Drives<br>B. FACTs Devices<br>C. Power Quality Improvement<br>Technique<br>D. Data Science for Engineers                                                                                                                                       | 2   |     |                  | 2          | 25      | 75            |         |       |        | 100                |
| PROJ | EE414 | Internship                                                                                                                                                                                                                                                                                                                 | •   | -   | 12               | 6          |         | •             | 50      |       | 100    | 150                |
| PROJ | EE415 | Project Stage-II                                                                                                                                                                                                                                                                                                           |     | 863 | 4                | 2          |         |               | 50      |       |        | 50                 |

Head of Dept. Dept.of Electrical Engg. Sanjivani College of Engineering Kopargaon 423603

Dean Academics Sanjivani College of Engineering Kopargaon-423603



college of En

Dept.of

Electrical

Enginee:ing

2020

洌 ſП

17

Konsmaon

Sanjivani College of Engineering, Kopargaon

2023-2024

Page 7 of 41







DEPARTMENT OF ELECTRICAL ENGINEERING COURSE STRUCTURE - 2020 PATTERN SECOND YEAR B. TECH Academic Year 2021-22

## SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)



## **DEPARTMENT OF ELECTRICAL ENGINEERING**

**Profile:** The Electrical Engineering degree program offer the graduates to enter a dynamic and rapidly changing field with career opportunities in Electric Power System, Power Electronics, Robotics and Control, Microprocessors and Controllers, Integrated Circuits, Computer Software. The demand for electrical power and electronic systems is increasing rapidly and electrical engineers are in great demand to meet the requirements of the growing industry. Electrical Engineers are mainly employed in industries using Electrical Power, Manufacturing Electrical Equipment, Accessories, Electronic Systems, Research and Development departments which work on energy saving devices and Software Development.

Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, electromagnetic and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, Artificial Intelligence, mechatronics, and electrical materials science. Identifying these areas today's Electrical Engineer needs to have the capacity of adaptability and creativity in these new technical eras, to meet the industry 4.0.

Electrical Engineering Department of Sanjivani College of Engineering offers the B. Tech. course in Electrical Engineering with an intake of 60 students. The department has well qualified and dedicated faculty and is known for its high academic standards, well-maintained discipline, and complete infrastructure facilities.

## **Vision of Department**

Our vision is to create an environment of academic excellence in the subject areas of Electrical Engineering & allied discipline through classroom teaching, practical demonstration & activities.

We are looking towards expansion of problem-solving horizons in the emerging areas of Switchgear & Protection, Power Systems, Electrical Machines & Drives, Control Systems etc.

## **Mission of Department**

Our mission is to make use of the Technology of Electrical Engineering as a principal instrument for deriving optimal solutions in multidisciplinary Engineering problems having social relevance. We are committed to the development of Technical human resources exhibiting professional and ethical attitudes and interdisciplinary approach.

## **Program Outcomes (POs):**

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, society, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning in formed by the contextual knowledge to assess social, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply the set of one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

**Program Educational Objectives (PEOs)** 

The PEOs of undergraduate programme in Electrical Engineering are broadly classified as follows

- 1. **PEO 1:** Graduates will have the mathematical & scientific knowledge to analyze & solve emerging real-world problems related to power systems, electrical machines, control systems, electrical measurements, switchgear & protection.
- **2. PEO 2:** Graduates will be able to pursue higher education in Electrical Engineering or other fields of their interest in reputed organizations.
- **3. PEO 3:** Graduates will be employable in the diversified sectors of industry, government organizations, public sector, and multinational corporations.
- **4. PEO 4:** Graduates will be able to communicate effectively, adopt lifelong learning, act with integrity, and have interpersonal skills with commitment to their ethical and social responsibilities.



- 1. **PSO 1:** Apply the knowledge of mathematics, science & Electrical Engineering fundamentals to complex problems in Electrical Machines, Control Systems, Power Systems, Power Electronics, switchgear & Protection.
- **2. PSO 2:** Ability to critically understand the generation, transmission and distribution concepts in Electrical Power Systems, Control systems and renewable energy sector.
- **3. PSO 3:** Capability to understand various computational methods for design & analysis of Electrical Systems.
- **4. PSO 4:** An understanding of professional, ethical, legal, security issues, social responsibilities and indulge in lifelong learning.

## **COURSE STRUCTURE- 2020 PATTERN** SECOND YEAR B. TECH. ELECTRICAL ENGINEERING

|      |       |                                                                 |    | SI | EME              | STER-III       | [                              |               |         |       |        |        |       |  |
|------|-------|-----------------------------------------------------------------|----|----|------------------|----------------|--------------------------------|---------------|---------|-------|--------|--------|-------|--|
|      |       | Course                                                          | r  |    | hing S<br>ours/v | Scheme<br>week | <b>Evaluation Scheme-Marks</b> |               |         |       |        |        |       |  |
| Cat. | Code  | Title                                                           | L  | Т  | Р                | Credits        | ISE                            | Theory<br>ESE | CA      | OR    | PR     | TW     | Total |  |
| РСС  | EE201 | Material Science                                                | 3  | -  | -                | 3              | 30                             | 50            | 20      | -     | -      | -      | 100   |  |
| BSC  | BS202 | Engineering<br>Mathematics III                                  | 3  | 1  | -                | 4              | 30                             | 50            | 20      | -     | -      | -      | 100   |  |
| РСС  | EE203 | Electrical<br>Measurements and<br>Instrumentation               | 4  | -  | -                | 4              | 30                             | 50            | 20      | -     | -      | -      | 100   |  |
| РСС  | EE204 | Analog and Digital<br>Electronics                               | 3  | -  | -                | 3              | 30                             | 50            | 20      | -     | -      | -      | 100   |  |
| нѕмс | HS205 | Universal Human<br>Values & Professional<br>Ethics              | 3  | -  | -                | 3              | 30                             | 50            | 20      | -     | -      | -      | 100   |  |
| HSMC | EE206 | General Proficiency                                             | -  | -  | 2                | 1              | -                              | -             | -       | -     | -      | 50     | 50    |  |
| LC   | EE207 | Material Science<br>Laboratory                                  | -  | -  | 2                | 1              | -                              | -             | -       | 50    | -      | -      | 50    |  |
| LC   | EE208 | Electrical<br>Measurements and<br>Instrumentation<br>Laboratory | -  | -  | 2                | 1              | -                              | -             | -       | -     | 50     | -      | 50    |  |
| LC   | EE209 | Analog and Digital<br>Electronics<br>Laboratory                 | -  | -  | 2                | 1              | -                              | -             | -       | -     | 50     | -      | 50    |  |
| MC   | MC210 | Mandatory Course-III                                            | 2  | -  | -                | No             | -                              | -             | -       | -     | -      | -      | -     |  |
|      |       | Total                                                           | 18 | 1  | 8                | 21             | 150                            | 250           | 100     | 50    | 100    | 50     | 700   |  |
| MC21 | 10 M  | andatory Course-III                                             |    | Со | nstitut          | tion of India  | – Basi                         | c featu       | res and | funda | mental | princi | ples  |  |

|              | List of A                  | Abbreviations |                                    |
|--------------|----------------------------|---------------|------------------------------------|
| Abbreviation | Full Form                  | Abbreviation  | Full Form                          |
| BSC          | Basic Science Course       | MC            | Mandatory Course                   |
| ESC          | Engineering Science Course | PCC           | Professional Core Course           |
| HSMC         | Humanities/Social          | PEC           | Professional Elective Course       |
|              | Sciences/Management Course |               |                                    |
| IP           | Induction Program          | OEC           | Open Elective Course               |
| L            | Lecture                    | LC            | Laboratory Course                  |
| Т            | Tutorial                   | CA            | Continuous Assessment              |
| Р            | Practical                  | OR            | End Semester Oral Examination      |
| ISE          | In-Semester Evaluation     | PR            | End Semester Practical Examination |
| ESE          | End-Semester Evaluation    | TW            | Continuous Term Work Evaluation    |
| Cat          | Category                   | PROJ          | Project                            |

#### Sanjivani College of Engineering, Kopargaon

#### **COURSE STRUCTURE- 2020 PATTERN** SECOND YEAR B. TECH. ELECTRICAL ENGINEERING

|      |       |                                                                  |    | S | EME             | STER-I        | [V                      |               |    |    |     |     |       |  |
|------|-------|------------------------------------------------------------------|----|---|-----------------|---------------|-------------------------|---------------|----|----|-----|-----|-------|--|
|      |       | Course                                                           | Т  |   | ing So<br>urs/w | cheme<br>eek  | Evaluation Scheme-Marks |               |    |    |     |     |       |  |
| Cat. | Code  | Title                                                            | L  | Т | Р               | Credits       | ISE                     | Theory<br>ESE | СА | OR | PR  | TW  | Total |  |
| РСС  | EE211 | Numerical Computations<br>with Signals and<br>Systems            | 3  | 1 | -               | 4             | 30                      | 50            | 20 | -  | -   | _   | 100   |  |
| PCC  | EE212 | Network Analysis                                                 | 3  | 1 | -               | 4             | 30                      | 50            | 20 | -  | -   | -   | 100   |  |
| РСС  | EE213 | Electrical Machines I                                            | 4  | - | -               | 4             | 30                      | 50            | 20 | -  | -   | -   | 100   |  |
| РСС  | EE214 | Power System I                                                   | 3  | - | -               | 3             | 30                      | 50            | 20 | -  | -   | -   | 100   |  |
| LC   | EE215 | Numerical Computations<br>with Signals and<br>Systems Laboratory | -  | - | 2               | 1             | -                       | -             | -  | -  | 50  | -   | 50    |  |
| LC   | EE216 | Network Analysis<br>Laboratory                                   | -  | - | 2               | 1             | -                       | -             | -  | -  | 50  | -   | 50    |  |
| LC   | EE217 | Electrical Machines I<br>Laboratory                              | -  | - | 2               | 1             | -                       | -             | -  | -  | 50  | -   | 50    |  |
| LC   | EE218 | Power System I<br>Laboratory                                     | -  | - | 2               | 1             | -                       | -             | -  | 50 | -   | -   | 50    |  |
| PROJ | EE219 | Seminar / Mini Project                                           | -  | - | 2               | 1             | -                       | -             | -  | -  | -   | 50  | 50    |  |
| PROJ | EE220 | Professional<br>Development                                      | -  | - | 2               | 1             | -                       | -             | -  | -  | -   | 50  | 50    |  |
| MC   | MC221 | Mandatory Course-IV                                              | 2  | - | -               | No<br>Credits | -                       | -             | -  | -  | -   | -   | -     |  |
|      |       | Total                                                            | 15 | 2 | 12              | 21            | 120                     | 200           | 80 | 50 | 150 | 100 | 700   |  |

#### **MC221**

Mandatory Course-IV

Innovation - Project based - Sc., Tech, Social, Design & Innovation

|              | List of A                  | Abbreviations |                                    |
|--------------|----------------------------|---------------|------------------------------------|
| Abbreviation | Full Form                  | Abbreviation  | Full Form                          |
| BSC          | Basic Science Course       | MC            | Mandatory Course                   |
| ESC          | Engineering Science Course | PCC           | Professional Core Course           |
| HSMC         | Humanities/Social          | PEC           | Professional Elective Course       |
|              | Sciences/Management Course |               |                                    |
| IP           | Induction Program          | OEC           | Open Elective Course               |
| L            | Lecture                    | LC            | Laboratory Course                  |
| Т            | Tutorial                   | CA            | Continuous Assessment              |
| Р            | Practical                  | OR            | End Semester Oral Examination      |
| ISE          | In-Semester Evaluation     | PR            | End Semester Practical Examination |
| ESE          | End-Semester Evaluation    | TW            | Continuous Term Work Evaluation    |
| Cat          | Category                   | PROJ          | Project                            |



## **EE201: MATERIAL SCIENCE**

| Teaching Scheme        | <b>Examination Scheme</b>     |                 |
|------------------------|-------------------------------|-----------------|
| Lectures: 03 Hrs./Week | <b>Continuous Assessment:</b> | 20 Marks        |
| Tutorial: Hrs./Week    | In-Sem Exam:                  | <b>30 Marks</b> |
|                        | End-Sem Exam:                 | 50 Marks        |
| Credits: 3             | Total:                        | 100 Marks       |

**Prerequisite Course:** Students should have knowledge of various classes of materials like solid, liquid, gaseous, conducting, insulating and resistive along with their basic characteristics.

#### **Course Objectives**

- 1. To classify different materials from Electrical Engineering application point of view.
- 2. To understand various properties and characteristics of different classes of materials.
- 3. To select materials for applications in various electrical equipment.
- 4. To impart knowledge of Nano-technology, battery and solar cell materials.
- 5. To develop ability to test different classes of materials as per IS.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                     | Bloom's Taxonomy |               |  |  |
|-----|--------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|
|     |                                                                                                        | Level            | Descriptor    |  |  |
| CO1 | Categorize and classify different materials from Electrical<br>Engineering applications point of view. | 3                | Applying      |  |  |
| CO2 | Explain and summarize various properties and characteristics of different classes of materials.        | 2                | Understanding |  |  |
| CO3 | Choose materials for application in various electrical equipment                                       | 3                | Applying      |  |  |
| CO4 | Explain and describe knowledge of nanotechnology, batteries, and solar cell materials.                 | 2                | Understanding |  |  |
| CO5 | Test different classes of materials as per IS.                                                         | 4                | Analysing     |  |  |
| CO6 | Use of theoretical knowledge in practical field application.                                           | 3                | Applying      |  |  |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 2   | 2   | 1   | 2   | 3   | 1   | 1   |     | 1    |      | 2    | 3    | 2    |
| CO2    | 3                                                                                        | 1   | 1   | 2   | 2   | 2   | 2   | 1   | 1   | 1    | 1    | 2    | 2    | 2    |
| CO3    | 3                                                                                        | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1   |      | 1    | 1    | 1    | 1    |
| CO4    | 3                                                                                        | 1   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1    | 1    | 2    | 1    | 1    |
| CO5    | 3                                                                                        | 2   | 1   | 3   | 1   | 1   |     | 1   |     | 2    | 1    | 1    | 1    | 2    |
| CO6    | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   |     | 1   | 1    | 1    | 2    | 1    | 1    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | DIELECTRIC & OPTICAL PROPERTIES OF INSULATING<br>MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. | COs |
|          | Static Field, Parameters of Dielectric material [Dielectric constant,<br>Dipole moment, Polarization, Polarizability], Introduction to Polar<br>and Non- Polar dielectric materials. Mechanisms of Polarizations-<br>Electronic, Ionic and Orientation Polarization (descriptive treatment<br>only), Clausius Mossotti Equation, Piezo-Electric, Pyro-Electric &<br>Ferro-Electric Materials, Dielectric loss and loss tangent, Concept of<br>negative tan delta ( $\delta$ ). Introduction to fiber optics, materials used and<br>its applications.                                                                                                             | 06   | CO1 |
| UNIT-II  | INSULATING MATERIALS & DIELECTRIC BREAKDOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs. | CO  |
|          | Introduction, Characteristics of Good Insulating Material,<br>Classification, Solid Insulating Materials-Paper, Press Board, Fibrous<br>Materials, Ceramics, Mica, Asbestos, Resins, Amorphous materials<br>Polymers, Ceramics, Enamels, and its applications.<br>Liquid Insulating Materials such as Transformer Oil, Varnish,<br>Askarel. Insulating Gases like Air, SF <sub>6</sub> and its applications.<br>Introduction, Concept of Primary and Secondary Ionization of Gases<br>(descriptive treatment only), Breakdown Voltage, Breakdown<br>Strength, Factors affecting Breakdown Strengths of Solid, Liquid and<br>Gaseous dielectric materials.        | 06   | CO2 |
| UNIT-III | MAGNETIC MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO  |
|          | Introduction, Parameters of Magnetic material [Permeability,<br>Magnetic Susceptibility, Magnetization], Classification of<br>Magnetic Materials, Diamagnetism, Para magnetism,<br>Ferromagnetism, Ferri-magnetism, Ferro-magnetic behavior below<br>Critical Temperature, Spontaneous Magnetization, Curie-Weiss law,<br>Anti-ferromagnetism, Ferrites, Applications of Ferro-magnetic<br>Materials, Magnetic materials for Electric Devices such as<br>Transformer Core , Core of Rotating Machines, Soft Magnetic<br>Materials, Hard Magnetic Materials, Magnetic Recording Materials,<br>Compact Discs. Introduction to laser and magnetic strip technology. | 06   | CO3 |
| UNIT-IV  | CONDUCTING MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO  |
|          | General Properties of Conductor, Electrical Conducting Materials -<br>Copper, Aluminum and its applications, Materials of High & Low<br>Resistivity-Constantan, Nickel-Chromium Alloy, Tungsten, Canthal,<br>Silver & Silver alloys, Characteristics of Copper Alloys (Brass &<br>Bronze), Materials used for Lamp Filaments, Transmission Lines,<br>Electrical Carbon Materials, Materials for Super-capacitors. Material<br>used for Solders, Metals & Alloys for different types of Fuses,<br>Thermal Bimetal & Thermocouple. Introduction to<br>Superconductivity and Super Conductors.                                                                      | 06   | CO4 |
| UNIT-V   | NANOTECHNOLOGY AND BATTERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs. | CO  |
|          | Introduction, Concepts of Energy bands & various Conducting<br>Mechanism in Nano-structures, Carbon Nano-structures, Carbon<br>Molecules, Carbon Clusters, Carbon Nano-tubes and applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06   | CO5 |

| Ti<br>M<br>Su<br>(Z                                                                                                                                                                      | pecial Topics in Nano Technology such as Single Electron<br>ransistor, Molecular Machines, BN Nanotubes, Nano wires.<br>Iaterials used for Batteries: Lead Acid, Lithium-ion, Sodium-<br>ulphur, Nickel-Cadmium, Zero Emission Battery Research Activity<br>ZEBRA) Batteries. Batteries used in Electric Vehicle (EV) and<br>lectric Hybrid Vehicle (EHV).                                                                                                                                                                                  |                                          |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----|
| UNIT-VI T                                                                                                                                                                                | ESTING OF MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.                                     | СО  |
| 2.<br>3.<br>4.                                                                                                                                                                           | <ul> <li>Explanation of following with objectives, equipment required, ircuit diagrams and observations to be taken.</li> <li>Measurement of Dielectric Loss Tangent (tan δ) by Schering Bridge-IS 13585-1994.</li> <li>Measurement of Dielectric Strength of Solid Insulating Material-IS 2584.</li> <li>Measurement of Dielectric Strength of Liquid Insulating Material – IS 6798.</li> <li>Measurement of Dielectric Strength of Gaseous Insulating Material as per IS.</li> <li>Ieasurement of Flux Density by Gauss-meter.</li> </ul> | 06                                       | CO6 |
| Text Books:                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                                      |     |
| Student E<br>[T2] Electrical<br>[T3] K. B. Ra<br>Kataria &<br>[T4] P.K. Pala<br>(India) Pv<br>[T5] S.P. Seth,<br>publication<br>[T6] RonaldM<br>Chemistry<br>[T7] JamesF.SI<br>Engineeri | Engineering Materials", T.T.T.I, Madras.<br>aina & S. K. Bhattacharya, "Electrical Engineering Materials",<br>sons.<br>anisamy, "Material Science for Electrical Engineering", SciTec<br>vt. Ltd., Chennai.                                                                                                                                                                                                                                                                                                                                 | , S. K.<br>h Pub.<br>nd Sons<br>ciety of |     |
| References:                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |     |
| [R2] McG<br>[R2] S. P.                                                                                                                                                                   | Tagare, "Electrical Power Capacitors-Design & Manufacture", 7<br>raw Hill Publication.<br>Chalara & B. K. Bhatt, "Electrical Engineering Materials", Kha<br>ishers, Nath Market.                                                                                                                                                                                                                                                                                                                                                            |                                          |     |
| [R3] C.S. ]                                                                                                                                                                              | Indulkar & S. Thiruvengadam, "Electrical Engineering Materials", Som. Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S. Chand                                 |     |
| [R4] Kami                                                                                                                                                                                | raju & Naidu, "High Voltage Engineering", Tata McGra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w Hill                                   |     |
|                                                                                                                                                                                          | n Technology Course Material of IEEMA Ratner", Pearson Educati                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on.                                      |     |
| [R6] Rakosh                                                                                                                                                                              | Das Begamudre, "Energy Conversion Systems", New Age Inter<br>ishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |     |
|                                                                                                                                                                                          | tt Fischer, "Materials Science for Engineering Students", Elsevier pub                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lications.                               |     |

## **BS202: ENGINEERING MATHEMATICS III**

| Teaching Scheme        | Examination Scheme     |                 |
|------------------------|------------------------|-----------------|
| Lectures: 03 Hrs./Week | Continuous Assessment: | 20 Marks        |
| Tutorial: 01 Hrs./Week | In-Sem Exam:           | <b>30 Marks</b> |
|                        | End-Sem Exam:          | 50 Marks        |
| Credits: 4             | Total:                 | 100 Marks       |

#### **Prerequisite Course:**

- 1. Linear Algebra and Partial Differentiation (LA101)
- 2. Multivariate Calculus (MC109)

#### **Course Objectives**

- 1 To make students familiarize with concepts and techniques of vector calculus, probability, and differential calculus.
- 2 The intent is to furnish them with the techniques to understand engineering mathematics and its applications that would develop logical thinking power, useful in their disciplines.

**Course Outcomes (COs):** 

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                                                               | Bloom's | Taxonomy                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
|     |                                                                                                                                                                                  | Level   | Descriptor                        |
| CO1 | <b>Describe</b> and <b>recall</b> the basics of vector algebra, <b>apply</b> it to <b>calculate</b> directional derivative, divergence, and curl of vector function              | 1,2,3   | Remember/<br>Understand/<br>Apply |
| CO2 | <b>Understand</b> the concept vector integration, <b>analyze</b> , and <b>apply</b> it solve engineering problems <b>using</b> Green's theorem, Stoke's theorem, Gauss's theorem | 2,3,4   | Understand/<br>Apply/<br>Analyze  |
| CO3 | <b>Solve</b> ordinary differential equations <b>using</b> iterative, interpolation methods                                                                                       | 1,2     | Remember/<br>Understand           |
| CO4 | <b>Apply</b> integral transform technique to <b>solve</b> equations involved in engineering applications.                                                                        | 1,3     | Apply                             |
| CO5 | <b>Analyze</b> data, <b>find</b> mean, correlation, regression of a statistical data, <b>calculate</b> probability using different distributions.                                | 1,4     | Analyze                           |
| CO6 | <b>Analyze</b> and <b>apply</b> partial differential equation and <b>solve</b> practical problems in engineering                                                                 | 3,4     | Apply/<br>Analyze                 |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |
| CO2    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |
| CO3    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |
| CO4    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |
| CO5    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |
| CO6    | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | 2   | 2   | 1    | -    | 1    | -    | -    |

|                                              | Course Contents                                                                                                                                                                                                                                                                                                                                                        |               |          |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--|--|--|
| UNIT-I                                       | VECTOR DIFFERENTIATION                                                                                                                                                                                                                                                                                                                                                 | Hrs.          | COs      |  |  |  |
|                                              | Scalar and vector point function, Derivative of a vector point function, Gradient of scalar function $\emptyset$ , Directional derivative, Divergence and Curl of vector point function, Solenoidal and irrotational vector field and scalar potential, vector identities.                                                                                             | 08            | 1        |  |  |  |
| UNIT-II                                      | VECTOR INTEGRATION                                                                                                                                                                                                                                                                                                                                                     | Hrs. COs      |          |  |  |  |
|                                              | Line integral, Green's theorem, Work done, Conservative field,<br>surface integral, Stokes theorem, volume integral, Gauss<br>Divergence theorem, Equation of Stream line.                                                                                                                                                                                             | 08            | 2        |  |  |  |
| UNIT-III                                     | NUMERICAL METHODS                                                                                                                                                                                                                                                                                                                                                      | Hrs.          | COs      |  |  |  |
|                                              | Interpolation with unequal intervals: Lagrange's formulae,<br>Interpolation using Newton's forward and backward difference<br>formulae.<br>Numerical integration: Trapezoidal rule and Simpson's 1/3rd and<br>3/8 rules.<br>Numerical Differentiation: Euler and modified Euler's methods,<br>Runge-Kutta method of fourth order for solving first order<br>equations. | 08            | 3        |  |  |  |
| UNIT-IV                                      | FOURIER TRANSFORM                                                                                                                                                                                                                                                                                                                                                      | Hrs.          | Cos      |  |  |  |
|                                              | Dirichlet's Condition, Definition of Fourier transform, Properties of<br>Fourier transform, Fourier Cosine transform, Fourier sine<br>transform, Inverse Fourier transform.                                                                                                                                                                                            | 8             | 4        |  |  |  |
| UNIT-V                                       | BASIC STATISTICS AND PROBABILITY                                                                                                                                                                                                                                                                                                                                       | Hrs.          | Cos      |  |  |  |
|                                              | Measures of Central tendency, Moments, Skewness and Kurtosis,<br>Correlation and regression, Definitions of probability, Bay's<br>theorem, Distribution function, Binomial, Poisson, and normal<br>distributions                                                                                                                                                       | 8             | 5        |  |  |  |
| UNIT-VI                                      | APPLICATIONS OF PARTIAL DIFFERENTIAL                                                                                                                                                                                                                                                                                                                                   | Hrs.          | COs      |  |  |  |
| T (D)                                        | <b>EQUATIONS</b><br>Separation of variables; solutions of one-dimensional diffusion<br>equation; first and second order one-dimensional wave equation<br>and two-dimensional Laplace equations.                                                                                                                                                                        | 08            | 6        |  |  |  |
| Text Books:[T1]B. S.                         | Grewal, Higher Engineering Mathematics, 42/e, Khanna Publishers, 20                                                                                                                                                                                                                                                                                                    | 012 ISBN-     | 13.978-  |  |  |  |
| 8174091154.<br>[T2] Scott M<br>[T3] R. K. Ja |                                                                                                                                                                                                                                                                                                                                                                        | vier, 2012.   | 13: 9/8- |  |  |  |
|                                              | Stroud & D. S. Booth, Advanced Engineering Mathematics, Industria                                                                                                                                                                                                                                                                                                      | l Press, 5/e, | 2011,    |  |  |  |
| [R2] P. C. M<br>[R3] T. Veer                 | Matthews, Vector Calculus, Springer, 2/e, 2012, ISBN-9783540761808<br>rarajan, Probability Statistics and random processes, Tata McGraw Hil<br>108. ISBN 13: <u>9780070669253</u>                                                                                                                                                                                      |               |          |  |  |  |
|                                              | Kreyszig, Advanced Engineering Mathematics, Wiley, 9/e, 2013, ISB<br>/8-0471488859.                                                                                                                                                                                                                                                                                    | N-13:         |          |  |  |  |

## **EE203: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION**

| Teachin  | 0                                                                                                        |         |          |         |           |            |                   |            |                | n Schei  |           |         |         |          |              |
|----------|----------------------------------------------------------------------------------------------------------|---------|----------|---------|-----------|------------|-------------------|------------|----------------|----------|-----------|---------|---------|----------|--------------|
| Lecture  |                                                                                                          |         |          |         |           |            |                   |            |                | Assess   | ment:     |         |         |          | Marks        |
| Tutoria  | l: H                                                                                                     | rs./We  | ek       |         |           |            |                   |            | m Exa          |          |           |         |         |          | Marks        |
|          |                                                                                                          |         |          |         |           |            |                   |            | Sem Ex         | xam:     |           |         |         |          | Marks        |
| Credits  |                                                                                                          | ~       |          |         |           |            |                   | Total      | :              |          |           |         |         | 100      | <u>Marks</u> |
| Prerequ  |                                                                                                          |         | :        |         |           |            |                   |            |                |          |           |         |         |          |              |
| Course   | J                                                                                                        |         |          |         |           |            |                   |            |                |          |           |         |         |          |              |
|          | -                                                                                                        |         | e know   | ledge o | of syste  | m of u     | nits, cla         | ssificat   | tion, an       | d esser  | ntials of | f me    | asu     | ring     |              |
|          | instrur                                                                                                  |         |          |         | .1        |            | •                 |            | 0              | •        |           | 1.0     |         |          |              |
|          | -                                                                                                        |         | -        |         | the co    | nstruct    | ion & c           | peratio    | on of va       | rious e  | lectrica  | ul &    | nor     | n electr | ical         |
|          |                                                                                                          | •       | strumer  |         | idantifi  | tha m      | easurin           | a instr    | imonto         | & mak    |           | f i+ 1  | for     | auantif  | vina         |
|          |                                                                                                          | -       | s of ele | -       | •         |            | Casuliii          | g msu i    | linents        | & max    | e use o   | 1111    |         | quanti   | ying         |
| Course   |                                                                                                          |         |          | curcar  | Purunic   |            |                   |            |                |          |           |         |         |          |              |
| -        |                                                                                                          |         |          | of 41 - | 0.011     | - 1- etc.  | 4                 | a ch1-     | to             |          |           |         |         |          |              |
| After su | ccessi                                                                                                   | ui com  | -        |         | -         |            | ii Will b         | be able    | 10             |          |           |         |         |          |              |
|          |                                                                                                          |         | Cou      | rse Ou  | tcome     | <b>(s)</b> |                   |            |                |          | Bloon     | n's T   | [ax     | onomy    |              |
|          |                                                                                                          |         |          |         |           |            |                   |            | -              | L        | evel      |         |         | Descri   | ptor         |
| CO1      | Und                                                                                                      | erstand | l var    | ious    | charact   | teristics  | s of              | meas       | uring          |          |           |         |         |          |              |
|          |                                                                                                          |         | s, their | r class | sificatio | on and     | l range           | e exte     | nsion          |          | 2         |         | Ur      | ndersta  | nding        |
| ~ ~ ~    |                                                                                                          | nique.  |          |         |           |            |                   |            | -              |          |           |         |         |          |              |
| CO2      | 2 Classify resistance, apply measurement techniques for measurement of resistance, inductance.           |         |          |         |           |            | s for             |            | 3              |          | Aŗ        | oplying |         |          |              |
| CO3      |                                                                                                          |         |          |         | ,         |            |                   | and us     | o of           |          |           |         |         |          |              |
| COS      | 3 Explain construction, working principle and use of dynamometer type wattmeter for measurement of power |         |          |         |           |            |                   |            |                | 2        |           | Ur      | ndersta | nding    |              |
|          |                                                                                                          |         | ice and  |         |           |            |                   |            | 0.000          |          |           |         | 01      | lacista  | liaing       |
| CO4      |                                                                                                          |         |          |         |           |            | ple of            | 1-phase    | e and          |          |           |         |         |          |              |
|          |                                                                                                          |         |          |         |           |            | ter and           |            |                |          | 2         |         | Ur      | ndersta  | nding        |
|          |                                                                                                          | edures  |          |         |           |            |                   |            |                |          |           |         |         |          |              |
| CO5      |                                                                                                          |         |          |         |           |            | variou            |            |                |          | 2         |         |         |          |              |
|          | -                                                                                                        | meters  | ·        | portan  |           |            | ansduc            |            | their          |          | 3         |         | Аţ      | oplying  |              |
| CO6      |                                                                                                          |         |          |         |           |            | arious a<br>param | <b>.</b> . | 10ns.<br>using |          |           |         |         |          |              |
|          |                                                                                                          | sducers |          | v ai 10 | us pri    | y sicai    | Param             | 0.015      | using          |          | 4         |         | Ar      | nalysing | g            |
| L        | lium                                                                                                     |         | •        |         |           |            |                   |            |                |          |           |         |         |          |              |
| Mappin   | g of Co                                                                                                  | ourse O | utcomes  | to Prog | gram Ou   | itcomes    | (POs) a           | & Progr    | am Spe         | cific Ou | tcomes    | (PSC    | Os):    | :        |              |
|          | PO1                                                                                                      | PO2     | PO3      | PO4     | PO5       | PO6        | PO7               | PO8        | PO9            | PO10     | PO11      | PO      | 12      | PSO1     | PSO2         |
| CO1      | 3                                                                                                        | 2       | 2        | 2       | 2         | 1          | 1                 | 1          | 1              | _        | _         | 2       | ,       | 1        | 2            |
| CO1      |                                                                                                          |         |          |         |           |            |                   | 1          |                | -        |           |         | ,       | 1        |              |
| CO2      | 3                                                                                                        | 2       | 2        | 2       | 2         | 1          | 2                 | 1          | 1              | -        | -         | 1       |         | 1        | 2            |
| CO3      | 3                                                                                                        | 2       | 2        | 2       | 2         | 1          | 1                 | 1          | 1              | -        | -         | 1       |         | 1        | 2            |
|          | 3                                                                                                        | 2       | 1        | 2       | 2         | 1          | 1                 | 1          | 1              | 1        | _         | 2       | ,       | 1        | 2            |
| CO4      |                                                                                                          |         |          |         | ۷         | 1          |                   | 1          | 1              | 1        | -         |         |         | 1        |              |
| CO5      | 3                                                                                                        | 2       | 2        | 2       | 1         | 1          | 2                 | 1          | 1              | 1        | -         | 2       | 2       | 1        | 2            |

2

2

1

1

2

1

3

CO6

2

1

1

-

1

2

2

|            | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT I:    | MEASURING INSTRUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO  |
|            | <ul> <li>A. Classification of Measuring Instruments - Characteristics of measuring instruments: static and dynamic, accuracy, linearity, speed of response, dead zone, repeatability, resolution, span, reproducibility, drifts. Necessity of calibration, standards and their classification, absolute and secondary instruments, types of secondary instruments: indicating, integrating, and recording, analog / digital.</li> <li>Ammeter and Voltmeter Theory: Essentials of indicating instruments deflecting, controlling, and damping systems. Construction, working principle, torque equation, advantages, and disadvantages of Moving Iron (MI) (attraction and repulsion), and Permanent Magnet Moving Coil (PMMC), block diagram and operation of digital ammeter &amp; voltmeter.</li> <li>B. Range Extension: PMMC ammeters and voltmeters using shunts, multipliers. Universal shunt, universal multiplier. Instrument Transformers: Construction, connection of CT &amp; PT in the circuit, advantages of CT / PT over shunt and multipliers for range extension of MI Instruments, transformation ratio, turns ratio, nominal ratio, burden, ratio, and phase angle error.</li> </ul> | 9    | CO1 |
| UNIT       | (descriptive treatment only) MEASUREMENT OF RESISTANCE & INDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs. | СО  |
| II:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |
|            | <ul> <li>A. Measurement of Resistance: Measurement of low, medium, and high resistance. Wheatstone bridge, Kelvin's double bridge, ammeter-voltmeter method, megger, loss of charge method. Earth tester for earth resistance measurement.</li> <li>B. Measurement of Inductance: Introduction, sources, and detectors for A.C. bridge, general equation for bridge at balance. Measurement of inductance: Maxwell's inductance &amp; Maxwell's inductance – Capacitance Bridge, Anderson's bridge.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    | CO2 |
| UNIT       | MEASUREMENT OF POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | СО  |
| III:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |
|            | Construction, working principle, torque equation, errors and their<br>compensation, advantages and disadvantages of dynamometer<br>type wattmeter, low power factor wattmeter, poly-phase<br>wattmeter. Active & reactive power measurement in three phase<br>system for balanced and unbalanced load using three wattmeter<br>method, two wattmeter method & one wattmeter method. Power<br>analyser, Multi meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8    | CO3 |
| UNIT       | MEASUREMENT OF ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO  |
| IV:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |
|            | Construction, working principle, torque equation, errors, and<br>adjustments of single phase conventional (induction type) energy<br>meter. Calibration of energy meter. Block diagram and operation of<br>electronic energy meter. Three phase energy meter, TOD meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    | CO4 |
|            | MEASURING INSTRUMENTS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. | CO  |
| UNIT<br>V: | MEASURING INSTRUMENTS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | птs. | CO  |

| UNIT                            | <ul> <li>use of CRO for measurement of voltage, current, period, frequency. Phase angle &amp; frequency by Lissajous pattern &amp; numerical. Introduction to DSO.</li> <li>B. Transducers: Introduction, classification, types: resistive, inductive, capacitive, basic requirements for transducers.</li> <li>C. Pressure Measurement: Introduction, classification of pressure as low, medium &amp; high, absolute, gauge, vacuum, static, dynamic &amp; head pressure. High pressure measurement using electric methods, low pressure measurement by McLeod gauge and Pirani gauge, capacitive pressure transducer.</li> <li>MEASURING INSTRUMENTS-II</li> </ul> | Hrs.                          | СО     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|
| VI:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5.                         | 0      |
|                                 | <ul> <li>A. Level Measurement: Introduction and importance of level measurement, level measurement methods: mechanical, hydraulic, pneumatic, electrical, nucleonic, and ultrasonic.</li> <li>B. Displacement Measurement: LVDT &amp; RVDT – construction, working, application, null voltage, specifications, advantages &amp; disadvantages, effect of frequency on performance.</li> <li>C. Strain Gauge: Introduction, definition of strain, types of strain gauge: Wire strain gauge, foil strain gauge, semiconductor strain gauge etc.; their construction, working, advantages.</li> </ul>                                                                   | 8                             | CO6    |
| Text Boo                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |        |
|                                 | K. Sawhney, "A Course in Electrical and Electronic Measurements & In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | strumentation                 | ,      |
|                                 | anpat Rai & Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0 W    |
|                                 | . Gupta, "A Course in Electronics and Electrical Measurements and Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trumentation"                 | S. K.  |
|                                 | aria & Sons,<br>X. Jain, "Mechanical and Industrial Measurements" Khanna Publishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |        |
|                                 | C. Nakra & K. K. Chaudhari, "Instrumentation Measurement and Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sis" Tata McG                 | raw    |
| Hill                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |        |
|                                 | ce Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |        |
| [R1] E. V                       | V. Golding & F. C. Widdies, "Electrical Measurements & Measuring In-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | struments", Re                | eem    |
|                                 | blications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |        |
| [R2] Dr.                        | Rajendra Prasad, "Electronic Measurements & Instrumentation", Khan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |        |
| [R2] Dr.<br>[R3] Aru            | n K. Ghosh, "Introduction to Measurements and Instrumentation", PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Publication                   |        |
| [R2] Dr.<br>[R3] Aru<br>[R4] M. | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Publication<br>", PHI Publica | ation. |

## **EE204: ANALOG AND DIGITAL ELECTRONICS**

| Teaching Scheme                                     | <b>Examination Scheme</b>     |                 |
|-----------------------------------------------------|-------------------------------|-----------------|
| Lectures: 03 Hrs./Week                              | <b>Continuous Assessment:</b> | 20 Marks        |
| Tutorial: Hrs./Week                                 | In-Sem Exam:                  | <b>30 Marks</b> |
|                                                     | End-Sem Exam:                 | 50 Marks        |
| Credits: 3                                          | Total:                        | 100 Marks       |
| Buomagnicita Comusa Desia Electronica En sin estina |                               |                 |

Prerequisite Course: Basic Electronics Engineering

- **Course Objectives** 
  - 1. To Introduce students to the basic features of operational amplifier.
  - 2. To provide knowledge and experience for implementing simple electronic circuits to meet or exceed design specifications.
  - 3. To enable students for implementing combinational logic circuits for various applications.
  - 4. To impart knowledge for implementing sequential circuits using flip-flops.
  - 5. To analysis conventional rectifier and precision rectifier
  - 6. To design desire voltage regulator

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                 | Bloom's | Taxonomy   |
|-----|--------------------------------------------------------------------|---------|------------|
|     | Course Outcome (3)                                                 | Level   | Descriptor |
| CO1 | Analysis of number system, perform binary arithmetic and           | 3       | Analyzing  |
|     | reduce expressions by K-Map                                        |         |            |
| CO2 | Design of rectifier                                                | 3       | Analyzing  |
| CO3 | Analyze various parameters of Op-amp and applications              | 3       | Analyzing  |
| CO4 | Apply the knowledge of Op-amp as filter and waveform generator     | 4       | Applying   |
| CO5 | Analyze BJT as amplifier with various configuration                | 3       | Analyzing  |
| CO6 | Explain basics of various types of flipflops, counter and register | 4       | Applying   |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO2   | 3                                                                                        | 2   | 1   | 1   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO3   | 3                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 1    | -    | 2    | 2    | 2    |
| CO4   | 3                                                                                        | 2   | 1   | 1   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO5   | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | -    | 2    | 2    | 2    |
| CO6   | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | _    | 2    | 2    | 2    |

|                  | Course Contents                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I           | NUMBER SYSTEM & BOOLEAN'S ALGEBRA                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | COs |
|                  | Numbering systems-binary, octal, decimal, and hexadecimal and<br>their conversion, codesBCD, Grey and excess3,<br>Binary arithmetic: - addition and subtraction by 1's and 2's<br>compliment.<br>Boolean's algebra, De-Morgan's theory etc.<br>K-map: - structure for two, three and four Variables, SOP and POS<br>form reduction of Boolean expressions by K-map.                                          | 08   | CO1 |
| UNIT-II          | DIODE & PRECISION RECTIFIERS:                                                                                                                                                                                                                                                                                                                                                                                | Hrs. | COs |
|                  | Diode rectifier: Introduction, Single phase half wave rectifier with R,<br>RL loads. Single phase full wave rectifier-Center tap and bridge<br>rectifier. Three phase full wave bridge rectifier with R load.<br>Comparison of single-phase half wave and full wave rectifiers,<br>Precision rectifiers: Half wave and Full wave. Comparison of diode<br>and precision rectifier.                            | 08   | CO2 |
| UNIT-<br>III     | OPERATIONAL AMPLIFIER & APPLICATIONS:                                                                                                                                                                                                                                                                                                                                                                        | Hrs. | COs |
|                  | Op-Amp: Block diagrams of 741, ideal and practical parameters,<br>open loop, and close loop configuration of Op-Amp. Applications of<br>Op- Amp- Comparator, Schmitt trigger, zero crossing detectors, V-I<br>and I-V converters, Instrumentation amplifier, peak detector.                                                                                                                                  | 08   | CO3 |
| UNIT-<br>IV      | FILTERS & REGULATORS & WAVEFORM GENERATOR:                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | COs |
|                  | Active filters-Its configuration with frequency response, Analysis of<br>first order low pass and high pass filters, IC 555 –construction,<br>working and modes of operation- astable and monostable multi<br>vibrators, Sequence generator, voltage regulators using ICs 78xx,<br>79xx, LM 317. Waveform generation using Op-amp - sine, square,<br>saw tooth and triangular generator                      | 08   | CO4 |
| UNIT-V           | BJT & FET APPLICATIONS:                                                                                                                                                                                                                                                                                                                                                                                      | Hrs. | COs |
|                  | BJT amplifier, Introduction, Class A amplifier, single stage and multi<br>stage BJT amplifier, direct coupled, RC coupled and transformer<br>coupled, Darlington pair, push-pull amplifier, and differential<br>amplifier, FET construction and characteristic                                                                                                                                               | 08   | CO5 |
| UNIT-<br>VI      | COMBINATIONAL & SEQUENTIAL CIRCUITS                                                                                                                                                                                                                                                                                                                                                                          | Hrs. | COs |
|                  | Concept of Combinational & Sequential circuits, Flip flops – R-S,<br>Clocked S-R, D latches, Edge Triggered D flip-flops, Edge triggered<br>JK flip flops, JK Master - slave flip flop, Register- Buffer registers,<br>shift registers, controlled shift registers, ring counter, Counters –<br>asynchronous Counters, synchronous counter, up - down counter,<br>twisted ring counters, N –module Counters. | 08   | CO6 |
| Text Book        |                                                                                                                                                                                                                                                                                                                                                                                                              | -    |     |
| 2. Alle<br>3. AA | gio Franco, 'Design with Op-Amps and analog Integrated Circuits', TMF<br>en Mottershed, 'Electronic Devices & Circuits', PHI.<br>nand Kumar, 'Fundamentals of Digital Circuits, PHI.<br>Jain "Digital Electronics "Tata McGraw Hill, New Delhi                                                                                                                                                               | 1.   |     |

| Reference Books:                                              |                         |
|---------------------------------------------------------------|-------------------------|
| 1. R.A. Gayakwad, 'Op-Amps & Linear Integrated Circuits', PHI | , Fourth Edition, 2012. |

- 2. Boylestad R. L. and Nashelsky Louis, 'Electronic Devices & Circuit Theory', Pearson, Tenth Edition, 2009.
- 3. M. Moris Mano and Michael Ciletti, 'Digital Design', Pearson Publications.
- 4. Tokheim, "Digital Electronics- Principles and application", 6<sup>th</sup> edition, Tata McGraw Hill, New Delhi

### HS205: UNIVERSAL HUMAN VALUES AND PROFESSIONAL ETHICS

| Teaching Scheme        | <b>Examination Scheme</b>     |                 |
|------------------------|-------------------------------|-----------------|
| Lectures: 03 Hrs./Week | <b>Continuous Assessment:</b> | 20 Marks        |
|                        | In-Sem Exam:                  | <b>30 Marks</b> |
|                        | End-Sem Exam:                 | 50 Marks        |
| Credits: 3             | Total:                        | 100 Marks       |
|                        |                               |                 |

#### Prerequisite Course: Course Objectives

1. To help the students appreciate the essential complementarity between values and skills to ensure mutual happiness and prosperity.

2. To elaborate on 'Self exploration' as the process for Value Education

3. To facilitate the understanding of harmony at various levels starting from self and going towards family and society.

4. To elaborate on the salient aspects of harmony in nature and the entire existence

5. To explain how the Right understanding forms the basis of Universal human values and definitiveness of Ethical human conduct.

6. To provide the vision for a holistic way of living and facilitate transition from chaotic life to an orderly life

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                                                  | <b>Bloom's Taxonomy</b> |            |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|--|
|     |                                                                                                                                                                     | Level                   | Descriptor |  |
| CO1 | Recognize the concept of self-exploration as the process of value education.                                                                                        | 1                       | Remember   |  |
| CO2 | Interpret the human being as the coexistence of self and body.                                                                                                      | 2                       | Understand |  |
| CO3 | Explain relationship between one Self and the other Self as the essential part of relationship and harmony in the family                                            | 2                       | Understand |  |
| CO4 | Explain the goal of human being living in the society, the system required to achieve the human goal and the scope of this system.                                  | 2                       | Understand |  |
| CO5 | Interpret the interconnectedness, harmony, and mutual fulfilment inherent in the nature and the entire existence.                                                   | 2                       | Understand |  |
| CO6 | Draw ethical conclusions in the light of Right understanding<br>facilitating the development of holistic technologies,<br>production systems and management models. | 3                       | Apply      |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 3   | 2   | 1    | -    | 3    | -    | -    |
| CO2   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 3   | 2   | 1    | -    | 3    | -    | -    |
| CO3   | -                                                                                        | -   | -   | -   | -   | 3   | 2   | 3   | 3   | 1    | -    | 3    | -    | -    |
| CO4   | -                                                                                        | -   | -   | -   | -   | 3   | 2   | 3   | 3   | 1    | -    | 3    | -    | -    |
| CO5   | -                                                                                        | -   | -   | -   | -   | 3   | 2   | 3   | 3   | 1    | -    | 3    | -    | -    |
| CO6   | -                                                                                        | -   | -   | -   | -   | 2   | 2   | 3   | 3   | 1    | -    | 3    | -    | -    |

Sanjivani College of Engineering, Kopargaon

|                         | Course Contents                                                                                                                                                                                                                                       |      |     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I                  | INTRODUCTION TO VALUE EDUCATION                                                                                                                                                                                                                       | Hrs. | COs |
|                         | Values, Morals and Ethics; Concept and need of value education; Self-<br>exploration as the process for value education; Guidelines for value<br>education; Basic human aspirations and their fulfilment                                              | 06   | CO1 |
| <b>UNIT-II</b>          | HARMONY IN HUMAN BEING                                                                                                                                                                                                                                | Hrs. | COs |
|                         | Human being as the coexistence of self and the body; Discrimination<br>between the needs of the self and the body; The body as an instrument;<br>Harmony in the self; Harmony of the self with the body                                               | 06   | CO2 |
| <b>UNIT-III</b>         | HARMONY IN THE FAMILY, SOCIETY AND NATURE                                                                                                                                                                                                             | Hrs. | COs |
|                         | Harmony in the family- The basic unit of human interaction; Values in<br>the human-to-human relationship; Harmony in the society; Vision for<br>the universal human order; Harmony in the nature; Realizing existence<br>as coexistence at all levels | 06   | CO3 |
| UNIT-IV                 | PROFESSIONAL ETHICS                                                                                                                                                                                                                                   | Hrs. | COs |
|                         | Natural acceptance of human values; Definitiveness of ethical human<br>conduct; Humanistic education and universal human order;<br>Competence in professional ethics; Transition towards value-based life<br>and profession                           | 06   | CO4 |
| UNIT-V                  | ENGINEERING ETHICS AND SOCIAL EXPERIMENTATION                                                                                                                                                                                                         | Hrs. | COs |
|                         | Need of engineering ethics; Senses of engineering ethics; Variety of<br>moral issues; Moral autonomy; Utilitarianism; Engineering as<br>experimentation; Engineers as responsible experimenters; Codes of<br>ethics                                   | 06   | CO5 |
| UNIT-VI                 | GLOBAL ISSUES                                                                                                                                                                                                                                         | Hrs. | COs |
|                         | Globalization and multi-national corporations; Cross-cultural issues;<br>Business ethics; Environmental ethics; Computer ethics; Bio-ethics;<br>Ethics in research; Intellectual property rights and plagiarism                                       | 06   | CO6 |
| <b>Text Books</b>       |                                                                                                                                                                                                                                                       |      |     |
| Ethics",<br>2. R. S. Na | aur, R. Sangal, G. P. Bagaria, "A Foundation Course in Human Values and<br>, Excel Books Pvt. Ltd.<br>aagarazan, "A Textbook on Professional Ethics and Human Values", New A<br>Publishers<br>Books:                                                  |      |     |
| 3. B. P. Ba             | nerjee, "Foundations of Ethics and Management", Excel Books Pvt. Ltd.                                                                                                                                                                                 |      |     |

- 4. P. L. Dhar, R. R. Gaur, "Science and Humanism", Commonwealth Publishers
- 5. M. K. Gandhi, "The Story of my Experiments with Truth", Discovery Publisher http://uhv.org.in/

Considering the specific nature of this course, the methodology is explorational and thus universally adaptable. In order to connect the content of this course with practice, minimum 6 group activities should be conducted with active involvement of the students. The teacher's assessment should be strictly based on the participation of the students in these activities.

| <b>Teachi</b> | ng Scheme Examinatio                                                             | on Scheme |             |
|---------------|----------------------------------------------------------------------------------|-----------|-------------|
| Practic       | cal: 02 Hrs./Week Term-World                                                     | k:        | 50 Marks    |
| Credits       | s: 1 Total:                                                                      |           | 50 Marks    |
| Preree        | quisite Course:                                                                  |           |             |
| Course        | Objectives                                                                       |           |             |
|               | 1. Development of students Soft Skills                                           |           |             |
|               | 2. Expose the students' to right attitudinal and behavioral aspec                | ets       |             |
|               | 3. Enhancement of Students' personality                                          |           |             |
|               | 4. Enhancement of Students' interpersonal skills                                 |           |             |
|               | 5. Enhancement of English Communication                                          |           |             |
|               | e Outcomes (COs):                                                                |           |             |
| After sı      | accessful completion of the course, student will be able to                      |           |             |
|               | Course Outcome (s)                                                               | Bloom     | 's Taxonomy |
|               |                                                                                  | Level     | Descriptor  |
| CO1           | Identify the behavioural traits                                                  | 3         | Applying    |
| CO2           | Communicate effectively                                                          | 4         | Analysing   |
| CO3           | Present themselves confidently in curricular and extra-<br>curricular activities | 5         | Evaluating  |
|               | Function effectively in multidisciplinary and hetero generous                    | 5         | Evaluating  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |          |          |          |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | РО<br>10 | РО<br>11 | PO<br>12 | PSO1 | PSO2 |
| CO1   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 2   | 2   | 1        | -        | 2        | -    | -    |
| CO2   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 2   | 2   | 1        | -        | 2        | -    | -    |
| CO3   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 2   | 2   | 1        | -        | 2        | -    | -    |
| CO4   | -                                                                                        | -   | -   | -   | -   | 2   | -   | 2   | 2   | 1        | -        | 2        | -    | -    |

#### **Course Contents**

#### **GUIDELINES FOR GENERAL PROFICIENCY**

The course aims to cause a basic awareness about the significance of soft skills in professional and inter-personal communications and facilitate an all-round development of personality. Hard or technical skills help securing a basic position in one's life and career. But only soft skills can ensure a person retain it, climb further, reach a pinnacle, achieve excellence, and derive fulfilment and supreme joy. Soft skills comprise pleasant and appealing personality traits as self-confidence, positive attitude, emotional intelligence, social grace, flexibility, friendliness, and effective communication skills. Recommended online NPTEL/SWAYAM courses for students are as following

- 1. Course Name: Developing Soft Skills and Personality, By Prof. T. Ravichandran | IIT Kanpur
- 2. Course Name: Body language: Key to professional Success, By Prof. Rashmi Gaur | IIT Roorkee
- 3. Course Name: German I, By Prof. Milind Brahme | IIT Madras
- 4. Course Name: Fundamental Concepts in Sociolinguistics, By Prof. Om Prakash | IIT Madras
- 5. Course Name: Soft skills, By Prof. Binod Mishra | IIT Roorkee
- 6. Course Name: Science, Technology and Society, By Prof. Sambit Mallick | IIT Guwahati
- 7. **Course Name:** Business English Communication, By Prof Aysha Iqbal Viswamohan | IIT Madras And other relevant courses

NOTE: The students should take approval before registering the course from the department.

- $\checkmark$  Students are suggested to follow the deadlines of the courses, and submit all the assignments due.
- ✓ Continuous Assessment is based on your Assignment Scores, Final Presentation and Report Submission.
- ✓ Students are motivated to appear for exam and earn Course Completion Certificate.

## **EE207: MATERIAL SCIENCE LABORATORY**

| Teaching Scheme         | <b>Examination Scheme</b> |          |
|-------------------------|---------------------------|----------|
| Lectures: Hrs./Week     | Oral:                     | 50 Marks |
| Tutorial: Hrs./Week     | Practical:                | Marks    |
| Practical: 02 Hrs./Week | Term Work:                | Marks    |
| Credits: 1              | Total:                    | 50 Marks |

**Prerequisite Course:** Students should have knowledge of various classes of materials like solid, liquid, gaseous, conducting, insulating and resistive along with their basic characteristics.

#### **Course Objectives**

- 1. To classify different materials from Electrical Engineering application point of view.
- 2. To understand various properties and characteristics of different classes of materials.
- 3. To select materials for applications in various electrical equipment.
- 4. To impart knowledge of Nano-technology, battery and solar cell materials.
- 5. To develop ability to test different classes of materials as per IS.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                           | <b>Bloom's Taxonomy</b> |               |  |  |
|-----|--------------------------------------------------------------|-------------------------|---------------|--|--|
|     | course outcome (s)                                           | Level                   | Descriptor    |  |  |
| CO1 | Categorize and classify different materials from Electrical  | 3                       | Applying      |  |  |
|     | Engineering applications point of view.                      |                         |               |  |  |
| CO2 | Explain and summarize various properties and characteristics | 2                       | Understanding |  |  |
|     | of different classes of materials.                           |                         |               |  |  |
| CO2 | Choose materials for application in various electrical       | 3                       | Applying      |  |  |
| CO3 | equipment                                                    |                         |               |  |  |
| CO4 | Explain and describe knowledge of nanotechnology, batteries, | 2                       | Understanding |  |  |
|     | and solar cell materials.                                    |                         |               |  |  |
| CO5 | Test different classes of materials as per IS.               | 4                       | Analysing     |  |  |
| 000 |                                                              |                         |               |  |  |
| CO6 | Use of theoretical knowledge in practical field application. | 3                       | Applying      |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 2   | 1   | 2   | 3   | 1   | 1   |     | 1    |      | 2    | 3    | 2    |
| CO2   | 3                                                                                        | 1   | 1   | 2   | 2   | 2   | 2   | 1   | 1   | 1    | 1    | 2    | 2    | 2    |
| CO3   | 3                                                                                        | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1   |      | 1    | 1    | 1    | 1    |
| CO4   | 3                                                                                        | 1   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1    | 1    | 2    | 1    | 1    |
| CO5   | 3                                                                                        | 2   | 1   | 3   | 1   | 1   |     | 1   |     | 2    | 1    | 1    | 1    | 2    |
| CO6   | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   |     | 1   | 1    | 1    | 2    | 1    | 1    |
| Course Contents                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Ex. No                                                   | Name of Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.                                 | COs                           |  |  |  |  |  |  |  |  |
| 1                                                        | To measure dielectric strength of solid insulating materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                    | 6,3                           |  |  |  |  |  |  |  |  |
| 2                                                        | To measure dielectric strength of liquid insulating materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                    | 6,3                           |  |  |  |  |  |  |  |  |
| 3                                                        | To measure dielectric strength of gaseous insulating materials<br>using Sphere Gap-Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                    | 6,3                           |  |  |  |  |  |  |  |  |
| 4                                                        | To obtain Hysteresis Loop of the Ferro-Magnetic Material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                    | 4                             |  |  |  |  |  |  |  |  |
| 5                                                        | To understand the principle of thermocouple & to obtain characteristics of different thermocouples.                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                    | 3,4                           |  |  |  |  |  |  |  |  |
| 6                                                        | To measure Insulation Resistance & KVAr capacity of power capacitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                    | 2,3                           |  |  |  |  |  |  |  |  |
| 7                                                        | To measure Resistivity of High Resistive Alloys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                    | 3                             |  |  |  |  |  |  |  |  |
| 8                                                        | To observe development of tracks due to ageing on different<br>insulating materials e.g., Bakelite, Perspex, polyesters, Mica, Fibre<br>glass etc.                                                                                                                                                                                                                                                                                                                                                                                         | 2                                    | 4,2                           |  |  |  |  |  |  |  |  |
| 9                                                        | Testing of resins and polymers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                    | 3                             |  |  |  |  |  |  |  |  |
| 10                                                       | Measurement of Tangent of Dielectric Loss Angle (tan $\delta$ ) of solid/liquid dielectric materials.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                    | 3,4                           |  |  |  |  |  |  |  |  |
| 11                                                       | Measurement of Flux Density by Gauss-meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                    | 6                             |  |  |  |  |  |  |  |  |
| Text Book                                                | KS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                               |  |  |  |  |  |  |  |  |
| [T2] I<br>[T3] I<br>[T4] I<br>[T5] S<br>[T6] I<br>[T7] J | <ul> <li>Edition.</li> <li>Electrical Engineering Materials", T.T.T.I, Madras.</li> <li>K. B. Raina &amp; S. K. Bhattacharya, "Electrical Engineering Maters</li> <li>Sons.</li> <li>P.K. Palanisamy, "Material Science for Electrical Engineering", Second.</li> <li>S.P. Seth, "ACourseinElectricalEngineeringMaterials", DhanpatRair</li> <li>RonaldM.DellandDavidA. J. Rand, "Understanding Batteries</li> <li>Chemistry, 2001Publication.</li> <li>JamesF.Shackelford&amp;M.K. Muralidhara, "IntroductiontoMaterialScience</li> </ul> | ciTech Pub<br>andSons pu<br>", Royal | . (India) Pvt.<br>ıblication. |  |  |  |  |  |  |  |  |
| Reference                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                               |  |  |  |  |  |  |  |  |
| [R1]<br>[R2]                                             | <ul><li>D. M. Tagare, "Electrical Power Capacitors-Design &amp; Manufacture Publication.</li><li>S. P. Chalotra &amp; B. K. Bhatt, "Electrical Engineering Material Nath Market.</li></ul>                                                                                                                                                                                                                                                                                                                                                 |                                      |                               |  |  |  |  |  |  |  |  |
| [R3]                                                     | C.S. Indulkar&S. Thiruvengadam, "ElectricalEngineeringMateria<br>Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                    |                               |  |  |  |  |  |  |  |  |
| [R4]<br>[R5] "Insı<br>[R6]                               | Kamraju & Naidu, "High Voltage Engineering", Tata McGraw Hil<br>ulation Technology Course Material of IEEMA Ratner", Pearson Ec<br>Traugott Fischer, "Materials Science for Engineering Students", E<br>publications.                                                                                                                                                                                                                                                                                                                      | lucation.                            | on.                           |  |  |  |  |  |  |  |  |
| [R7]                                                     | Rakosh Das Begamudre, "Energy Conversion Systems", N<br>Publishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lew Age                              | International                 |  |  |  |  |  |  |  |  |

# EE208: ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LABORATORY

| Teaching Scheme         | Examination Scheme  |
|-------------------------|---------------------|
| Lectures: Hrs./Week     | Oral: Marks         |
| Tutorial: Hrs./Week     | Practical: 50 Marks |
| Practical: 02 Hrs./Week | Term Work: Marks    |
| Credits: 1              | Total:50 Marks      |
| Prerequisite Course:    |                     |

# Course Objectives

- 1. To provide the knowledge of system of units, classification, and essentials of measuring instruments.
- 2. To get the knowledge about the construction & operation of various electrical & non electrical measuring instruments.
- 3. To apply the knowledge to identify the measuring instruments & make use of it for quantifying measurements of electrical parameters.

# **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                                                | Bloom's | Taxonomy      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|     | course outcome (s)                                                                                                                                                | Level   | Descriptor    |
| CO1 | Understand various characteristics of measuring instruments, their classification and range extension technique.                                                  | 2       | Understanding |
| CO2 | Classify resistance, apply measurement techniques for measurement of resistance, inductance.                                                                      | 3       | Applying      |
| CO3 | Explain construction, working principle and use of dynamometer type wattmeter for measurement of power under balance and unbalance condition.                     | 2       | Understanding |
| CO4 | Explain Construction, working principle of 1-phase and 3-<br>phase induction, static energy meter and calibration<br>procedures                                   | 2       | Understanding |
| CO5 | Use of CRO for measurement of various electrical parameters,<br>importance of transducers, their classification, selection<br>criterion and various applications. | 3       | Applying      |
| CO6 | Measurement of various physical parameters using transducers.                                                                                                     | 4       | Analysing     |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 2   | 2   | 2   | 1   | 1   | 1   | 1   | -    | -    | 2    | 1    | 2    |
| CO2   | 3                                                                                        | 2   | 2   | 2   | 2   | 1   | 2   | 1   | 1   | -    | -    | 1    | 1    | 2    |
| CO3   | 3                                                                                        | 2   | 2   | 2   | 2   | 1   | 1   | 1   | 1   | -    | I    | 1    | 1    | 2    |
| CO4   | 3                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 1    | I    | 2    | 1    | 2    |
| CO5   | 3                                                                                        | 2   | 2   | 2   | 1   | 1   | 2   | 1   | 1   | 1    | -    | 2    | 1    | 2    |
| CO6   | 3                                                                                        | 2   | 2   | 2   | 1   | 1   | 2   | 1   | 1   | 1    | -    | 2    | 1    | 2    |
| 00    | 5                                                                                        | 2   | 2   | 2   | 1   | 1   | Z   | 1   | 1   | 1    | -    | 2    | 1    |      |

|             | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|--|--|--|--|--|
| Ex. No      | Name of Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.        | COs           |  |  |  |  |  |  |
| Compulsor   | y Experiments (06):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |  |  |  |  |  |  |
|             | Demonstration of working parts of various types of meters by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |               |  |  |  |  |  |  |
| 1           | opening the instrument & explanation of symbols & notations used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2           | 1             |  |  |  |  |  |  |
|             | on instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
| 2           | Extension of instrument range: ammeter, voltmeter, watt meter using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           | 1             |  |  |  |  |  |  |
| 2           | CT & PT.Measurement of active & reactive power in three phase circuit using<br>two wattmeter methods (balanced & unbalanced loads).Measurement of active & reactive power in three phase balanced<br>circuit using one wattmeter method with two-way switch.Calibration of single-phase static energy meter at different power<br>factors.Measurement of voltage, current, time period, frequency & phase<br>angle using CRO.experiments are to be conducted of following experiments:Measurement of reactive power by one wattmeter with all possible<br>connections of current coil and pressure coil.Measurement of power in three phase, four wire system using three<br>CTs & two wattmeter. |             |               |  |  |  |  |  |  |
| 3           | Measurement of active & reactive power in three phase circuit using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           | 3             |  |  |  |  |  |  |
| 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z           | 3             |  |  |  |  |  |  |
| 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 3             |  |  |  |  |  |  |
| ſ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 5             |  |  |  |  |  |  |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 4             |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           |               |  |  |  |  |  |  |
| 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 5             |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           |               |  |  |  |  |  |  |
| Any four ex |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
| 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
| -           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           | 3             |  |  |  |  |  |  |
| 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 3             |  |  |  |  |  |  |
| 3           | Calibration of single-phase wattmeter at different power factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2           | 4             |  |  |  |  |  |  |
| 4           | i) Measurement of resistance by ammeter voltmeter method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           | 2             |  |  |  |  |  |  |
|             | ii) Measurement of low resistance using Kelvin's double bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _           | -             |  |  |  |  |  |  |
| 5           | Measurement of inductance using Anderson's bridge/ Maxwell's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2           | 2             |  |  |  |  |  |  |
|             | bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |               |  |  |  |  |  |  |
| Text Books  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | montation"  |               |  |  |  |  |  |  |
|             | awhney, "A Course in Electrical and Electronic Measurements & Instru-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |               |  |  |  |  |  |  |
| -           | at Rai & Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ontation?   | S V           |  |  |  |  |  |  |
|             | upta, "A Course in Electronics and Electrical Measurements and Instrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ientation S | <b>5. K</b> . |  |  |  |  |  |  |
|             | & Sons,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |               |  |  |  |  |  |  |
|             | ain, "Mechanical and Industrial Measurements" Khanna Publishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |               |  |  |  |  |  |  |
|             | Jakra & K. K. Chaudhari, "Instrumentation Measurement and Analysis"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tata McGr   | aw            |  |  |  |  |  |  |
| Hill.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |  |  |  |  |  |  |
| Reference H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | monta?      |               |  |  |  |  |  |  |
|             | Golding & F. C. Widdies, "Electrical Measurements & Measuring Instru-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nems, Ke    |               |  |  |  |  |  |  |
| Public      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1:-1      |               |  |  |  |  |  |  |
|             | endra Prasad, "Electronic Measurements & Instrumentation", Khanna P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |  |  |  |  |  |  |
|             | . Ghosh, "Introduction to Measurements and Instrumentation", PHI Pub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |               |  |  |  |  |  |  |
|             | S. Anand, "Electronics Instruments and Instrumentation Technology", P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | tion.         |  |  |  |  |  |  |
|             | A BELL, "Electronic Instrumentation and Measurements", Oxford pub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |               |  |  |  |  |  |  |
| [R6] Johntu | rner and Martyn Hill, "Instrumentation for Engineers & Scientist", Oxfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rd publicat | 10n           |  |  |  |  |  |  |

# **EE209: ANALOG AND DIGITAL ELECTRONICS LABORATORY**

| Teaching Scheme         | <b>Examination Scheme</b> |          |
|-------------------------|---------------------------|----------|
| Lectures: Hrs./Week     | Oral:                     | Marks    |
| Tutorial: Hrs./Week     | Practical:                | 50 Marks |
| Practical: 02 Hrs./Week | Term Work:                | Marks    |
| Credits: 1              | Total:                    | 50 Marks |

Prerequisite Course:

Basic Electronics Engineering

**Course Objectives** 

- 1. To Introduce students to the basic features of operational amplifier.
- 2. To provide knowledge and experience for implementing simple electronic circuits to meet or exceed design specifications.
- 3. To enable students for implementing combinational logic circuits for various applications.
- 4. To impart knowledge for implementing sequential circuits using flip-flops.
- 5. To analysis conventional rectifier and precision rectifier
- 6. To design desire voltage regulator

# **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                 | Bloom's | Taxonomy   |
|-----|--------------------------------------------------------------------|---------|------------|
|     |                                                                    | Level   | Descriptor |
| CO1 | Analysis of number system, perform binary arithmetic and           | 3       | Analyzing  |
|     | reduce expressions by K-Map                                        |         |            |
| CO2 | Design of rectifier                                                | 3       | Analyzing  |
| CO3 | Analyze various parameters of Op-amp and applications              | 3       | Analyzing  |
| CO4 | Apply the knowledge of Op-amp as filter and waveform generator     | 4       | Applying   |
| CO5 | Analyze BJT as amplifier with various configuration                | 3       | Analyzing  |
| CO6 | Explain basics of various types of flipflops, counter and register | 4       | Applying   |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO2    | 3                                                                                        | 2   | 1   | 1   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO3    | 3                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 1    | -    | 2    | 2    | 2    |
| CO4    | 3                                                                                        | 2   | 1   | 1   | 2   | 2   | 1   | 1   | 2   | 1    | -    | 2    | 2    | 2    |
| CO5    | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | -    | 2    | 2    | 2    |
| CO6    | 3                                                                                        | 2   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1    | -    | 2    | 2    | 2    |

| Course Contents                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |               |            |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|--|--|--|--|--|--|--|--|
| Ex. No                                                                                                                                                                                                                                                                                                  | Name of Experiment                                                                                                                                                                                                                                                     | Hrs.          | COs        |  |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                       | Design and implementation of half wave rectifier.                                                                                                                                                                                                                      | 2             | 2          |  |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                       | Design and implementation of full wave rectifier.                                                                                                                                                                                                                      | 2             | 2          |  |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                       | Study of shift register operation IC7495                                                                                                                                                                                                                               | 2             | 6          |  |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                       | Study of flip-flops and verification of truth table                                                                                                                                                                                                                    | 2             | 6          |  |  |  |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                       | Study of opamp comparator and ZCD                                                                                                                                                                                                                                      | 2             | 3,4        |  |  |  |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                       | Study of active filter low pass and high pass                                                                                                                                                                                                                          | 2             | 2          |  |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                       | Study of decoders and multiplexers. & decade counters.                                                                                                                                                                                                                 | 2             | 3          |  |  |  |  |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                                       | Study of op-amp as an inverting & non-inverting amplifier.                                                                                                                                                                                                             | 2             | 4          |  |  |  |  |  |  |  |  |
| 9                                                                                                                                                                                                                                                                                                       | Study of op-amp as differentiator & integrator., zero crossing detector & peak detector.                                                                                                                                                                               | 4             | 3          |  |  |  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                      | Study of op-amp as Schmitt trigger, precision rectifier, & instrumentation amplifier.                                                                                                                                                                                  | 4             | 3,4        |  |  |  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                      | Study of a stable and mono stable multi vibrator using IC 555 & power amplifiers                                                                                                                                                                                       | 4             | 4          |  |  |  |  |  |  |  |  |
| <b>Text Bool</b>                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                        |               |            |  |  |  |  |  |  |  |  |
| <ol> <li>Sergio Franco, 'Design with Op-Amps and analog Integrated Circuits', TMH.</li> <li>Allen Mottershed, 'Electronic Devices &amp; Circuits', PHI.</li> <li>A Anand Kumar, 'Fundamentals of Digital Circuits, PHI.</li> <li>R.P. Jain "Digital Electronics "Tata McGraw Hill, New Delhi</li> </ol> |                                                                                                                                                                                                                                                                        |               |            |  |  |  |  |  |  |  |  |
| Reference                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |               |            |  |  |  |  |  |  |  |  |
| 2. Bo<br>20                                                                                                                                                                                                                                                                                             | <ul> <li>A. Gayakwad, 'Op-Amps &amp; Linear Integrated Circuits', PHI, Fourth Edition, ylestad R. L. and Nashelsky Louis, 'Electronic Devices &amp; Circuit Theory', P 09.</li> <li>Moris Mano and Michael Ciletti, 'Digital Design', Pearson Publications.</li> </ul> |               | n Edition, |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | kheim, "Digital Electronics- Principles and application", 6th edition, Tata Mo                                                                                                                                                                                         | cGraw Hill, N | New Delhi  |  |  |  |  |  |  |  |  |

# MC210: CONSTITUTION OF INDIA – BASIC FEATURES AND FUNDAMENTAL PRINCIPLES

| Teaching Scheme       | Examination Scheme |    |
|-----------------------|--------------------|----|
| Lectures: 2 Hrs./Week | Term Work:         | NA |
| Credits: Non-Credit   | Total:             | NA |

## **Course Objectives**

- 1. To study the historical background, salient features, and preamble of Indian constitution
- 2. To study the provision of fundamental right in the Indian constitution.
- **3.** To study the directive principle of state policy and fundamental duties.
- 4. To study the system of government through parliamentary and federal system.
- 5. To understand the formation, structure, and legislative framework of central government.
- 6. To understand the formation, structure, and legislative framework of state government.

## Course Outcomes (COs):

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                          | <b>Bloom's Taxonomy</b> |               |  |  |
|-----|-----------------------------------------------------------------------------|-------------------------|---------------|--|--|
|     | Course Outcome (s)                                                          | Level                   | Descriptor    |  |  |
| CO1 | Describe background, salient features of constitution of India              | 1                       | Remembering   |  |  |
| CO2 | Explain the system of government, it's structure and legislative framework. | 2                       | Understanding |  |  |
| CO3 | Apply the fundamental rights and duties in their life                       | 3                       | Applying      |  |  |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    |                                                                                          |     |     |     |     | 1   |     |     |     |      |      |      |      |      |
| CO2    |                                                                                          |     |     |     |     | 2   |     |     |     |      |      |      |      |      |
| CO3    |                                                                                          |     |     |     |     | 2   |     |     |     |      |      |      |      |      |

|              | Course Contents                                                                                                                                                                                                                                                                                     |      |     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I       | INTRODUCTION TO CONSTITUTION OF INDIA                                                                                                                                                                                                                                                               | Hrs. | COs |
|              | a. Historical background                                                                                                                                                                                                                                                                            |      |     |
|              | b. Salient features                                                                                                                                                                                                                                                                                 | 7    | 1   |
|              | c. Preamble of constitution                                                                                                                                                                                                                                                                         |      |     |
| UNIT-II      | FUNDAMENTAL RIGHTS                                                                                                                                                                                                                                                                                  | Hrs. | COs |
|              | <ul> <li>a. Features of fundamental rights</li> <li>b. Basic rights 1. Right to equality; 2. Right to freedom; 3.<br/>Right against exploitation; 4. Right to freedom of religion; 5.<br/>Cultural and educational rights; 6. Right to property; 7. Right<br/>to constitutional remedies</li> </ul> | 5    | 2   |
| UNIT-<br>III | DIRECTIVE PRINCIPLE OF STATE POLICY AND<br>FUNDAMENTAL DUTIES                                                                                                                                                                                                                                       | Hrs. | COs |
|              | Directive principle of state policy:<br>a. Features of directive principle                                                                                                                                                                                                                          | 5    | 3   |

Sanjivani College of Engineering, Kopargaon

|             | <ul> <li>b. Classification of directive principle</li> <li>c. Criticism of directive principle</li> <li>d. Utility of directive principle</li> <li>e. Conflict between Fundamental rights and directive principle</li> <li>Fundamental duties: <ul> <li>a. List of fundamental duties</li> <li>b. Features of fundamental duties</li> <li>c. Criticism of fundamental duties</li> <li>d. Significance of fundamental duties</li> <li>e. Swaran Singh Committee Recommendations</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                |      |     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-<br>IV | SYSTEM OF GOVERNMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. | COs |
|             | <ul> <li>a. Parliamentary system: Features of parliamentary government,<br/>Features of presidential government, merits, and demerit of<br/>Parliamentary system</li> <li>b. Federal system: Federal features of constitution, unitary<br/>features of constitution</li> <li>c. Centre and state relation: Legislative relation, administrative<br/>relations, and financial relation.</li> <li>d. Emergency provision: National emergency, financial<br/>emergency, and criticism of emergency provision</li> </ul>                                                                                                                                                                                                                                                                 | 5    | 4   |
| UNIT-V      | CENTRAL GOVERNMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | COs |
|             | <ul> <li>a. President: Election of president, powers and functions of president, and Veto power of president</li> <li>b. Vice-president: Election of vice-president, powers, and functions of vice-president</li> <li>c. Prime minister: Appointment of PM, powers and functions of PM, relationship with president</li> <li>d. Central council of ministers: Appointment of ministers, responsibility of ministers, features of cabinet committees, functions of cabinet committees</li> <li>e. Parliament: Organization of parliament, composition of the two houses, duration two houses, membership of parliament, session of parliament, joint sitting of two houses, budget in parliament.</li> <li>f. Supreme court (SC): Organization and powers of supreme court</li> </ul> | 5    | 5   |
| UNIT-<br>VI | STATE GOVERNMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs. | COs |
|             | <ul> <li>a. Governor: Appointment of governor, powers and functions of governor, constitutional position</li> <li>b. Chief minister: Appointment of CM, powers and functions of CM, relationship with governor</li> <li>c. State council of ministers: Appointment of ministers, responsibility of ministers, cabinet.</li> <li>d. High court (HC): Organization of HC, independence of HC, jurisdiction and powers of HC</li> <li>e. Sub-ordinate court: Structure and jurisdiction, LokAdalats, Family court, Gram Nyayalayas</li> </ul>                                                                                                                                                                                                                                           | 5    | 6   |

#### **Text Books:**

- **1.** Indian Polity for Civil Service Examination, M Laxmikanth, Mc GrawHill Education, Fifth Edition.
- 2. Introduction to the Constitution of India, Durga Das Basu, LexisNexis, 22<sup>nd</sup> Edition



# EE211: NUMERICAL COMPUTATIONS WITH SIGNALS AND SYSTEMS

| Teaching Scheme        | <b>Examination Scheme</b> |                 |
|------------------------|---------------------------|-----------------|
| Lectures: 03 Hrs./Week | Continuous Assessment:    | 20 Marks        |
| Tutorial: 01 Hr/Week   | In-Sem Exam:              | <b>30 Marks</b> |
|                        | End-Sem Exam:             | 50 Marks        |
| Credits: 04            | Total:                    | 100 Marks       |

#### **Prerequisite Course:**

1. Engineering Mathematics

### **Course Objectives**

- 1. Development of the strong foundation of signals and systems
- 2. Understand sampling theorem and its implications.
- 3. Development of strong foundation analytical mathematics
- 4. Study of various methods of numerical analysis of linear and non-linear problems
- 5. Use of method for solving the problems in engineering
- 6. Use of modern computing tool

## **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                                                                                                           | Bloom's | a Taxonomy    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|     |                                                                                                                                                                                                                              | Level   | Descriptor    |
| CO1 | Demonstrate arithmetic operations on floating point<br>representation, and types of errors in computation and their<br>causes of occurrence and apply appropriate numerical<br>method to solve different nonlinear equations | 3       | Applying      |
| CO2 | Apply different numerical methods for differentiation                                                                                                                                                                        | 3       | Applying      |
| CO3 | Apply and compare various numerical methods to solve first<br>and second order ODE, PDE and least square<br>approximations                                                                                                   | 3       | Applying      |
| CO4 | Understand the classification of signal and systems                                                                                                                                                                          | 2       | Understanding |
| CO5 | Apply the signal transformations like Fourier transform,<br>Laplace transform and Z- transform on signals and systems                                                                                                        | 3       | Applying      |
| CO6 | Assess Sampling theorem and its implications                                                                                                                                                                                 | 3       | Applying      |

|     | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO2 | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO3 | 2                                                                                        | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO4 | 3                                                                                        | 2   | 1   | 2   | 3   | 1   | 1   | 1   | 1   | -    | 1    | 2    | 2    | -    |
| CO5 | 3                                                                                        | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO6 | 2                                                                                        | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |

Г

|                                                                            | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
| UNIT-I                                                                     | Computer Arithmetic and Solution of Non-Linear Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.            | COs        |
|                                                                            | Floating Point representation, Arithmetic operations with normalized<br>floating-point numbers, errors in numbers, Truncation error, round off<br>error, inherent error, absolute and relative error.<br>Bisection method, and Newton-Raphson method, rate of convergence.                                                                                                                                                                                                                                                                                                                                                       | 6               | CO1        |
| UNIT-II                                                                    | Interpolation and Numerical Differentiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.            | CO         |
|                                                                            | Difference table, Lagrange's interpolation, Newton's Interpolation, iterated linear interpolation technique, Stirling's, and Bessel's central difference formulae                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6               | CO2        |
| UNIT-<br>III                                                               | Numerical Solution of Partial Differential Equation and Least Square Approximation of Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.            | CO         |
|                                                                            | Finite difference, approximation to derivatives. Laplace equation, Iterative methods for the solution of equations. Linear regression, Polynomial regression, fitting exponential, and trigonometric functions.                                                                                                                                                                                                                                                                                                                                                                                                                  | 6               | CO3        |
| UNIT-<br>IV                                                                | Basics of signals and Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs.            | CO         |
|                                                                            | Continuous and discrete time signals: Classification of Signals: Periodic<br>aperiodic, even, and odd, energy and power signals, Deterministic and<br>random signals, complex exponential and sinusoidal signals, periodicity,<br>unit impulse, unit step, Transformation of independent variable of<br>signals: time scaling, time shifting. System properties: Linearity,<br>Causality, time invariance and stability. Shifting and scaling operations,<br>Sampling Theorem and Aliasing Effect                                                                                                                                | 6               | CO4<br>CO6 |
| UNIT-V                                                                     | Signal Transformation I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.            | CO         |
|                                                                            | <b>Fourier Transformation</b> : Fourier transformation of continuous and discrete time signals and their properties. Parseval's theorem; Convolution in time (both discrete and continuous) and frequency domains with magnitude and phase response of LTI systems.                                                                                                                                                                                                                                                                                                                                                              | 6               | CO5        |
| UNIT-<br>VI                                                                | Signal Transformation II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.            | CO         |
|                                                                            | <ul> <li>Laplace Transform: Laplace transformation- analysis with examples and properties. Recapitulation, Analysis, and characterization of LTI systems using Laplace transform: Computation of impulse response and transfer function using Laplace transform.</li> <li>Z-Transforms: Basic principles of z-transform, z-transform definition, Relationship between z-transform and Fourier transform, region of convergence, properties of ROC, Properties of z-transform, Poles and Zeros, inverse z-transform using Contour integration, Residue Theorem, Power Series expansion and Partial fraction expansion.</li> </ul> | 6               | CO5        |
| Text Book                                                                  | is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |
| [T2] S. S<br>[T3] C. W<br>Springer, S<br>[T4] B.P<br>[T5] P. R<br>[T6] S G | ajaraman," Computer Oriented Numerical Method", Prentice Hall of Indi<br>. Sastry," Introductory methods of numerical analysis", Prentice Hall of In<br>Voodford, C. Phillips," Numerical Methods with Worked Examples: MATLA<br>Second Edition", John Wiley & Sons, Incorporated, 2011<br>. Lathi, "Signal Processing & Linear Systems", Oxford, Third Edition.<br>. Lathi, "Signal Processing & Linear Systems", Oxford, Third Edition.<br>. Lathis, "Signals and Systems", Pearson.<br>Haykin&B.V. Veen, "Signals and Systems", John Wiley.                                                                                   | ndia<br>AB Edit | tion",     |

## **References:**

[R1] A. Quarteroni, F. Saleri, and P. Gervasio, Scientific computing with MATLA and Octave, Third edition, (Springer, 2010).

[R2] Steven C. Chapra and Raymond P. Canale, "Numerical methods for Engineers", Mc-Graw Hill Publication, 2007.

[R3] W.Y. Yang, W. Cao, T.-S. Chung and J. Morris, Applied Numerical methods using MATLAB, (John Wiley, 2005).

- [R4] B.S. Grewal," Numerical Methods in Engineering & Science", Khanna Publishers.
- [R5] A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals & Systems", Pearson.
- [R6] A. NagoorKani, "Signals and Systems", McGraw Hill.
- [R7] H.P. Hsu, "Schaum's outline of Signals and systems", McGraw Hill Publication.

### **E-References**

- [1] <u>https://nptel.ac.in/courses/111/107/111107105/</u>
- [2] <u>https://nptel.ac.in/courses/115/103/115103114/</u>
- [3] <u>https://nptel.ac.in/courses/108/104/108104100/</u>
- [4] <u>https://nptel.ac.in/courses/117/101/117101055/</u>
- [5] <u>https://nptel.ac.in/courses/108/106/108106163/</u>

# **EE212: NETWORK ANALYSIS**

|                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mination Scheme                                                         |                     |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tinuous Assessment:                                                     | 20 Marks            |
| Tutorial                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | em Exam:                                                                | <b>30 Marks</b>     |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Sem Exam:                                                              | 50 Marks            |
| <b>Credits:</b>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l:                                                                      | 100 Marks           |
| Prereq                                       | uisite Course: Basic Electrical Engineering                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                     |
| Course                                       | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                     |
| 2.To<br>3.To<br>meth<br>4.To<br>5.To<br>6.To | develop the strong foundation for Electrical Networks.<br>develop analytical qualities in Electrical circuits by app<br>understand the behaviour of circuits by analysing the<br>ods and Laplace Transform approach.<br>understand basic concept of Graph theory.<br>apply knowledge of Network theory for analysis of 2-p<br>apply knowledge of Network theory for designing Low<br><b>Outcomes (COs):</b><br>ccessful completion of the course, student will be able to | e transient response us<br>port networks.<br>v-pass and high pass filte | ing classical       |
|                                              | Course Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bloom'                                                                  | s Taxonomy          |
|                                              | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level                                                                   | Descriptor          |
| CO1                                          | Demonstrate strong basics for network theory                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                       | Applying            |
| CO2                                          | Use the knowledge of problem-solving technique for the by application of theorems for DC and AC circuits.                                                                                                                                                                                                                                                                                                                                                                 | networks 3                                                              | Applying            |
| CO3                                          | Analyze the behaviour of the network by transient res                                                                                                                                                                                                                                                                                                                                                                                                                     | ponse 4                                                                 | Analysing           |
| CO4                                          | Demonstrate of Standard test inputs and transformed 1                                                                                                                                                                                                                                                                                                                                                                                                                     | network. 3                                                              | Applying            |
| CO5                                          | Understand the behaviour of the network by analysing                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         | I In denote a din e |
| 000                                          | ports analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | Understanding       |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |          |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|------|------|------|------|
|       | POI                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | 60d | PO1<br>0 | PO11 | P012 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | -   | -   | 2   | -   | -   | -   | 2   | 2        | -    | -    | 2    | 2    |
| CO2   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2        | -    | -    | 2    | 2    |
| CO3   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2        | -    | -    | 2    | 2    |
| CO4   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2        | -    | -    | 2    | 2    |
| CO5   | 3                                                                                        | 3   | -   | -   | 1   | -   | -   | -   | 2   | 2        | -    | -    | 2    | 2    |
| CO6   | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | -   | 2   | 1        | -    | -    | 2    | 2    |

|                           | Course contents                                                                                                                                                                                                                                                                                                                                            |           |            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| UNIT I                    | Basic Network Concept                                                                                                                                                                                                                                                                                                                                      | Hrs       | СО         |
|                           | Types of Sources, Source transformation, Series, parallel concept<br>for resistance, capacitance, and inductance, coupled circuits and dot<br>conventions, Kirchhoff's voltage and current law, mesh analysis,<br>nodal analysis, Concept of duality and dual networks. Graph<br>of network: Concept of tree branch, tree link, tie set and cut set.       | 8         | CO1        |
| UNIT II                   | Network Theorems                                                                                                                                                                                                                                                                                                                                           | Hrs       | CO         |
|                           | Superposition, Thevenin, Norton, Maximum Power Transfer Theorem,<br>Reciprocity theorem, Millman theorems applied to both ac/dc circuits.                                                                                                                                                                                                                  | 8         | CO2        |
| UNIT III                  | Transient Phenomena                                                                                                                                                                                                                                                                                                                                        | Hrs       | CO         |
|                           | Initial and Final Condition of network, General and Particular<br>Solution, time constant. Transient response of R-L, R-C and R-L-C<br>network in time domain.                                                                                                                                                                                             | 8         | CO3        |
| UNIT IV                   | Laplace Domain Analysis                                                                                                                                                                                                                                                                                                                                    | Hrs       | CO         |
|                           | Standard test inputs: Step, Ramp, Impulse, Their Laplace transform,<br>Representation of R, L, C in S domain, transformed network,<br>Application of Laplace transform to solve series and parallel R-L, R-<br>C and R-L-C circuits (Source free, Source driven).                                                                                          | 8         | CO4        |
| UNIT V                    | Network functions Two port Network concept                                                                                                                                                                                                                                                                                                                 | Hrs       | CO         |
|                           | Network functions for one and two port, calculation of network<br>functions, poles and zeros of network functions, restrictions on poles<br>and zeros, time domain behaviour from the pole and zero location,<br>Necessary conditions for stable driving point function and transfer<br>function, two port parameters: Z, Y, H, and transmission parameter | 8         | CO5        |
| UNIT VI                   | Application: Filter Design                                                                                                                                                                                                                                                                                                                                 | Hrs       | CO         |
|                           | Classification of filters: Low pass, High Pass, Band pass, Band stop,<br>Symmetrical networks: characteristic impedance, propagation<br>constant, Design of constant K- low pass and constant K- high pass<br>filters using symmetrical networks                                                                                                           | 8         | CO6        |
| Text Books:               |                                                                                                                                                                                                                                                                                                                                                            | 1 701     |            |
| 2. D Roy 0                | an Valkenburg, "Network Analysis", Prentice Hall of India Private Limite<br>Choudhary, "Network and Systems", New age international publishers.<br>Chakrabarti, "Circuit Theory", DhanpatRai and Company, 7th edition.                                                                                                                                     | ed, Thirc | l Edition. |
| <b>References:</b>        |                                                                                                                                                                                                                                                                                                                                                            |           |            |
| Publication<br>2. N.C. Ja | gan, "Network Analysis", BS Publication, Hyderabad, Second Edition.                                                                                                                                                                                                                                                                                        |           | "          |
| 5. John O'                | Malley, "Schaum's outline of Theorems and Problems of Basic Circuit                                                                                                                                                                                                                                                                                        | Anaiysis  | ,          |

McGraw Hill Publication.

|           |        |                         | E        | <b>E213</b> | : EL       | ECTI      | RICA     | LM        | ACH      | INES        | ES I    |               |               |    |  |  |
|-----------|--------|-------------------------|----------|-------------|------------|-----------|----------|-----------|----------|-------------|---------|---------------|---------------|----|--|--|
|           |        | ng Scher                |          |             |            |           |          | Examin    |          |             |         |               |               |    |  |  |
|           |        | es: 04 H                |          |             |            |           |          | Continu   |          |             | ent:    |               | 20 Mar        |    |  |  |
| Τι        | utori  | al: Hr                  | /Week    |             |            |           |          | n-Sem     |          |             |         |               | <b>30 Mar</b> | ks |  |  |
|           |        |                         |          |             |            |           |          | End-Se    | m Exa    | m:          |         |               | 50 Mar        |    |  |  |
|           | redit  |                         |          |             |            |           | ]        | Fotal:    |          |             |         | 1             | 100 Marks     |    |  |  |
| P         |        | quisite C               |          |             |            |           |          |           |          |             |         |               |               |    |  |  |
|           |        | Basic Ele               |          | -           | -          |           |          |           |          |             |         |               |               |    |  |  |
| C         |        | Basic Ele               |          | Circuit     | s.         |           |          |           |          |             |         |               |               |    |  |  |
| C         |        | e Objecti               |          |             |            |           |          |           |          |             |         |               |               |    |  |  |
|           |        | Understar               | -        |             | -          | -         |          |           | -        |             | nainata | ince.         |               |    |  |  |
|           |        | Analysis o              | -        | -           |            | -         |          | formers   | circuits |             |         |               |               |    |  |  |
|           |        | Understar               | -        | -           |            |           |          |           |          |             |         | <b>.</b> .    |               |    |  |  |
| C         |        | Analysis o              |          |             | n opera    | tion of   | differer | nt dc& 1  | nductio  | n mach      | ine con | iguratio      | ons.          |    |  |  |
|           |        | e Outcon                |          |             |            |           |          |           |          |             |         |               |               |    |  |  |
| A         | fter s | uccessful               | compl    | etion o     | f the co   | urse, st  | udent v  | will be a | able to  |             |         |               |               |    |  |  |
|           |        |                         |          | Course      | e Outco    | ome (s)   |          |           |          |             | Bloom   | 's Taxo       | nomy          |    |  |  |
|           |        |                         |          |             |            |           |          |           |          |             | Level   |               | scripto       | r  |  |  |
| C         | -      | Understa<br>application |          | c laws,     | concept    | s of ma   | gnetic   | circuits  | and its  |             | 2       |               | Understanding |    |  |  |
| C         | 02     | Apply en<br>transform   | ergy co  |             | —          | -         | -        | -         |          |             | 3       | Aj            | Applying      |    |  |  |
|           |        | Understa                |          |             |            |           |          |           | ner and  |             |         | +             |               |    |  |  |
| C         | 03     | parallel o              | peratio  | n of tra    | nsforme    | er and c  | ompari   | son       |          |             | 2       | Unde          | Understanding |    |  |  |
| C         | 04     | Identify a and its w    | orking   | as moto     | or to test | -         |          |           |          |             | 2       | Understanding |               |    |  |  |
|           |        | performa                |          |             |            |           | 10       |           |          |             |         |               |               |    |  |  |
| C         | 05     | Apply Cl<br>choose pr   |          |             |            |           |          | es Moto   | rs to    |             | 3       | Aj            | pplying       |    |  |  |
| C         | 06     | Understa                | nd Indu  | iction m    | notors &   | z its ope | eration  | on the b  | asis of  |             | 2       | Und           | erstandi      | na |  |  |
| U         | 00     | Speed, SI               | lip, Tor | que, Po     | wer, an    | d efficie | ency.    |           |          |             | 2       | Unu           | Istanui       | ng |  |  |
|           |        | ng of Cou               | ırse Ou  | tcomes      | to Prog    | gram O    | utcome   | es (POs   | ) & Pro  | ogram S     | pecific | Outcon        | mes           |    |  |  |
| (P        | PSOs)  |                         | PO3      | PO4         | PO5        | PO6       | PO7      | PO8       | PO9      | <b>PO10</b> | PO11    | PO12          | PSO1          | PS |  |  |
| D1        | 3      | 2                       | 1        |             |            | 1         |          |           |          |             | 1       | 2             | 3             | 2  |  |  |
| 02        | 3      | 2                       | 2        | 1           | 1          | 1         |          | 1         |          |             | 2       | 2             | 3             | 2  |  |  |
| 03        | 3      | 2                       | 1        | 1           | 1          | 1         |          | 1         |          |             | 1       | 2             | 3             | 2  |  |  |
| <b>D4</b> | 3      | 2                       | 1        | 1           | 1          | 1         |          | 1         |          |             | 1       | 2             | 3             | 2  |  |  |
| 05        | 3      | 2                       | 1        | 1           | 1          | 1         |          | 1         |          |             | 1       | 2             | 3             | 2  |  |  |
|           | l I    |                         |          |             |            |           |          |           |          |             |         | 2             |               |    |  |  |

|              | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| UNIT-I       | MAGNETIC FIELDS, CIRCUITS AND BASIC CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.       | COs |
|              | <ul> <li>a) Basic principles, conservation of energy, physical phenomenon<br/>involved in conversion, energy balance, energy stored in magnetic<br/>field.</li> <li>b) Magnetic circuits, analogy between electric and magnetic-circuits,<br/>series and parallel magnetic circuits, practical magnetic circuits,<br/>permanent magnet, and their applications</li> <li>c) Types of faults in electrical equipments {Electrical equipments such<br/>as transformer, CT/PT and rotating electrical machines}, maintenance<br/>strategies, breakdown maintenance, planned, preventative and<br/>condition-based maintenance.</li> </ul>                                                                                   | 08         | CO1 |
| UNIT-II      | TRANSFORMERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs.       | CO  |
|              | <b>Single phase Transformer</b> : Review, Concept of ideal transformer.<br>Resistance, leakage reactance and leakage impedance of transformer<br>windings & their effects on voltage regulation and efficiency. Exact and<br>approximate equivalent circuits referred to L.V. and H. V. side of the<br>transformer. Phasor diagrams for no-load and on load conditions.<br>Transformer ratings. Losses in a transformer, their variation with load,<br>voltage & Frequency on no load losses Efficiency and condition for<br>maximum efficiency. All day Efficiency.<br><b>Autotransformers</b> , their ratings and applications, Comparison with two<br>winding transformer with respect to saving of copper and size. | 08         | CO2 |
| UNIT-<br>III | SINGLE PHASE & THREE PHASE TRANSFORMERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.       | CO  |
|              | <ul> <li>a) Single Phase Transformers: Polarity test. Parallel operation of single-phase transformers, conditions to be satisfied, load sharing under various conditions. Cooling of transformers.</li> <li>b) Three Phase Transformers: Standard connections of three phase transformers and their suitability for various applications, voltage Phasor diagrams and vector groups. Descriptive treatment of Parallel operation of three phase transformers Scott connection and V-V connections. Three winding (tertiary windings) transformers.</li> </ul>                                                                                                                                                           | 08         | CO3 |
| UNIT-IV      | D.C. MACHINES –I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs.       | CO  |
|              | Review of construction, main parts, magnetic circuits, poles, yoke, field<br>winding, armature core,<br>Armature windings: Simple lap and wave winding, commutator, and brush<br>assembly. Generating action, E.M.F equation, magnetization curve, Flashing<br>of Generator.<br>Motoring action. Types of DC motors, significance of back E.M.F torque<br>equation, working at no-load and on-load. Losses, power flow diagram and<br>efficiency. Descriptive treatment of armature reaction.                                                                                                                                                                                                                           | 08         | CO4 |
| UNIT-V       | D.C. MACHINES –II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs.       | CO  |
| UNIT-VI      | <ul> <li>a) Characteristics and Selection of DC Motors for various applications (D.C. Shunt and Series Motors), Starting of DC motors, study of starters for series and shunt motor, solid state starters, speed control of various types of DC motors.</li> <li>b) Commutation: Process of commutation, time of commutation, reactance voltage, straight line commutation, commutation with variable current density, under and over commutation, causes of bad commutation and remedies, inter poles, compensating windings. (Descriptive treatment only)</li> <li>THREE PHASE INDUCTION MOTOR</li> </ul>                                                                                                             | 08<br>Hrs. | CO5 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1113.      |     |

| Unit              | Content Material Link                                                                                                                                     | NPTE<br>Lectur<br>/Video | re   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|
| E-resour          | ces:                                                                                                                                                      |                          |      |
| [R7] P. S. ]      | Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.                                                                                                 |                          |      |
|                   | ajit Ghosh, "Electrical Machines", Pearson Education, New Delhi.                                                                                          |                          |      |
|                   | ation, New Delhi, Second Edition.                                                                                                                         |                          |      |
|                   | Say, "Performance and Design of AC. Machines", CBS Publishers and Distribut<br>es I Hubert, "Electrical Machines Theory, Application, & Control", Pearson | 018.                     |      |
|                   | Langsdorf, "Theory and performance of DC machines", Tata McGraw Hill.                                                                                     | -                        |      |
|                   | cation Ltd., Fifth Edition.                                                                                                                               |                          |      |
|                   | Fitzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", Tata Mo                                                                            | cGraw H                  | Hill |
|                   | shers, Third Edition.                                                                                                                                     | ,                        |      |
|                   | Clayton and N. N. Hancock, "Performance and Design of Direct Current Machin                                                                               | es", CB                  | S    |
| Chen<br>Reference |                                                                                                                                                           |                          |      |
|                   | shna Reddy, "Electrical Machines- I and II", SCITECH Publications (India)Pvt.                                                                             | Ltd.                     |      |
|                   | S Guru, Husein R. Hiziroglu, "Electrical Machines", Oxford University Press.                                                                              |                          |      |
|                   | ath & Kothari, "Electrical Machines", Tata McGraw Hill.                                                                                                   |                          |      |
|                   | Bhattacharya, "Electrical Machine", Tata McGraw Hill publishing Co. Ltd,2nd E                                                                             | Edition.                 |      |
|                   | aq Husain, "Electrical Machines", Dhanpat Rai& Sons.                                                                                                      |                          |      |
|                   | rd Hughes "Electrical Technology", ELBS, Pearson Education.                                                                                               |                          |      |
| Text Bool         | developed efficiency.                                                                                                                                     |                          |      |
|                   | between rotor input power, rotor copper loss & gross mechanical power                                                                                     |                          |      |
|                   | Losses in three phase induction motor, power-flow diagram. Relation                                                                                       |                          |      |
|                   | characteristics. Relation between starting torque, full load torque and maximum torque.                                                                   |                          |      |
|                   | torque-slip Characteristics, effect of rotor resistance on torque-slip                                                                                    | 08                       | CO6  |
|                   | currents, its speed w.r.t. rotor and stator mmf.<br>Production of torque, torque-slip relation, condition for maximum torque,                             |                          |      |
|                   | slip, frequency of rotor emf and rotor currents, mmf produced by rotor                                                                                    |                          |      |
|                   | winding. Principle of working, simplified theory with constant air gap flux;                                                                              |                          |      |
|                   | rotating mmf by 3-phase balanced voltage fed to a symmetrical 3-phase                                                                                     |                          |      |

|          |                                                                         |                   | PDF<br>Number |
|----------|-------------------------------------------------------------------------|-------------------|---------------|
|          | Transformers:                                                           |                   | 1, 2          |
| т        | Operating principle, classification, construction                       |                   |               |
| II       | Emf equation, phasor diagrams                                           | https://nptel.ac. | 3             |
| &        | Equivalent circuit model                                                | in/courses/1081   | 4             |
| III      | Losses & efficiency                                                     | <u>05017/</u>     | 5,6           |
| 111      | Voltage regulation                                                      |                   | 7             |
|          | Frequency response, polarity test                                       |                   | 6             |
|          | Autotransformers, Isolation & instrument transformers                   |                   | 17            |
|          | <b>D.C. Machines:</b><br>Operating principle, generator & motor action, |                   | 21, 22        |
| iivani ( | College of Engineering, Kopargaon Page 40 of                            | f 59              | 2021-22       |

Sanjivani College of Engineering, Kopargaon Page 40 of 59

|    | construction,                                                                                       |                                         |            |
|----|-----------------------------------------------------------------------------------------------------|-----------------------------------------|------------|
|    | Types of excitations                                                                                | -                                       | 22         |
|    | Emf & torque equations                                                                              | https://nptel.ac.                       | 23         |
| IV | Power stages & efficiency                                                                           | in/courses/1081                         | 35         |
|    | Commutation                                                                                         | 05017/                                  | 25         |
| &  | Armature Reaction,                                                                                  |                                         | 24         |
| V  | Characteristics & applications of d.c generators                                                    |                                         | 30         |
|    | Starting & speed control of d.c motors,                                                             |                                         | 31, 32     |
|    | Characteristics & applications of d.c motors                                                        |                                         | 36, 40     |
|    | Induction Machines:<br>Three-phase induction motors. Principle of operation,<br>construction, types |                                         | 34, 35     |
|    | construction, types<br>Rotating magnetic field, emf equation of an AC<br>Machine                    | https://nptel.ac.                       | 35         |
|    | Torque developed in an induction motor                                                              | <u>in/courses/10810</u><br><u>5131/</u> | 40, 47     |
| VI | Equivalent circuit model                                                                            |                                         | 41, 42, 43 |
|    | Torque-speed characteristics                                                                        |                                         | 51, 60     |
|    | Starting & speed control.                                                                           |                                         | 57         |
|    | Single phase induction motors                                                                       |                                         | 65 to 73   |
|    | Starting, application                                                                               |                                         | 65 to 73   |

# **EE214: POWER SYSTEM-I**

|                                                        | EE214: POWER SYSTE                                                                                                                                                                                                                                                                                                                                                 | / <b>IVI-I</b>                                      |                   |  |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|--|--|--|--|--|--|
| Teaching                                               | <b>3</b>                                                                                                                                                                                                                                                                                                                                                           | amination Scheme                                    |                   |  |  |  |  |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                    | ntinuous Assessment:                                | 20 Marks          |  |  |  |  |  |  |
| <b>Tutorial:</b>                                       | Hrs./Week In-                                                                                                                                                                                                                                                                                                                                                      | In-Sem Exam: 30                                     |                   |  |  |  |  |  |  |
|                                                        | En                                                                                                                                                                                                                                                                                                                                                                 | d-Sem Exam:                                         | 50 Marks          |  |  |  |  |  |  |
| Credits:                                               |                                                                                                                                                                                                                                                                                                                                                                    | tal:                                                | 100 Marks         |  |  |  |  |  |  |
| Generation circuit co                                  | site Course: Students should have knowledge of Basics<br>on, various insulating materials, and properties and know<br>mponents.<br>Dbjectives                                                                                                                                                                                                                      |                                                     |                   |  |  |  |  |  |  |
|                                                        | o make students understand basic structure and requirement                                                                                                                                                                                                                                                                                                         | · · · ·                                             |                   |  |  |  |  |  |  |
| of<br>3. To<br>4. It<br>in<br>5. To<br><b>Course (</b> | o understand various electrical terms related with power s<br>f tariffs.<br>o understand specifications and applications of major elec-<br>is aimed to impart knowledge about nature of power syst<br>npact.<br>o develop a skill to establish background for further studi<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to | ctrical equipment preser<br>ems engineering and the | nt in powerplant. |  |  |  |  |  |  |
|                                                        | Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                 | Ploom                                               | 's Taxonomy       |  |  |  |  |  |  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                    | Level                                               | Descriptor        |  |  |  |  |  |  |
| C01                                                    | Understand basic structure and requirements of any ele<br>Power system & various electrical terms related with po<br>system and understand various types of tariffs.                                                                                                                                                                                               | ectric                                              | Understanding     |  |  |  |  |  |  |
| CO2                                                    | Understand major electrical equipment's in power station                                                                                                                                                                                                                                                                                                           | ons 2                                               | Understanding     |  |  |  |  |  |  |
| CO3                                                    | Explain various parameters of mechanical design of over<br>Lines power system.                                                                                                                                                                                                                                                                                     | 2                                                   | Understanding     |  |  |  |  |  |  |
| CO4                                                    | Working of various equipment & transmission line parameters<br>used in power system.2Understanding                                                                                                                                                                                                                                                                 |                                                     |                   |  |  |  |  |  |  |
| CO5                                                    | Evaluate transmission line performance and economic of power system                                                                                                                                                                                                                                                                                                | operation 5                                         | Evaluating        |  |  |  |  |  |  |
| CO6                                                    | Classify types of feeders, cables, voltage and P.F. contro<br>Methods                                                                                                                                                                                                                                                                                              | ol 4                                                | Analysing         |  |  |  |  |  |  |

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): PO1 PO2 PO4 PO5 PO7 PO8 PO9 PO PO PO PSO1 PSO2 PO3 PO6 10 11 12 CO1 3 2 2 2 2 ------\_ --CO2 3 2 -------2 2 2 --CO3 3 2 2 2 2 ---------CO4 3 2 2 2 2 -------\_ \_ CO5 3 2 2 2 2 \_ -\_ \_ -\_ \_ \_ \_ 3 CO6 2 2 2 2 \_ \_ \_ \_ \_ \_ \_ \_

|          | COURSE CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | BASIC STRUCTURE OF POWER SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | COs |
|          | A) Structure of Electrical Power Systems:<br>Structure of Electrical Power System, Interconnected grid system,<br>Different factors associated with generating stations such as Connected<br>load, Maximum Demand, Demand Factor, average load, load factor,<br>diversity factor, plant capacity factor, reserve capacity, plant use factor,<br>Load curve, load duration curve, concept of base load and peak load<br>stations.                                                                                             | 06   | CO1 |
| UNIT-II  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | CO  |
| UN11-11  | MAJOR ELECTRICAL EQUIPMENT'S IN POWER STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO  |
|          | Features & use of alternators, necessity of exciters, various excitation<br>systems such as dc excitation, ac excitation and static excitation<br>systems, transformers, voltage regulators, bus-bars, current limiting<br>reactors, circuit breakers, protective relays, current transformers,<br>Potential transformers, Lightning arresters, earthing switches,<br>isolators, carrier current equipment (P.L.C.C.), Control panels, battery<br>rooms, metering and other control room equipment in generating<br>stations | 06   | CO2 |
| UNIT-III | MECHANICAL DESIGN OF OVERHEAD LINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs. | CO  |
|          | <ul> <li>A) Mechanical Design of Overhead Lines:<br/>Main components of overhead lines, Line supports, conductor spacing, length of span, calculation of sag for equal and unequal supports and effect of ice and wind loadings.</li> <li>B) Underground Cables:<br/>Classification, Construction of cable, XLPE cables, insulation resistance, dielectric stress in single core cable, capacitance of single core and three core cables. Grading of cables, inter sheath grading, capacitance grading.</li> </ul>           | 06   | CO3 |
| UNIT-IV  | TRANSMISSION LINE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. | CO  |
|          | <ul> <li>A) Resistance: Resistance, skin effect and proximity effect</li> <li>B) Inductance: Definition of inductance, inductance of single phase two wire line, conductor types, and bundled conductors. Inductance of composite conductor, single circuit three phase line, double circuit three phase line.</li> </ul>                                                                                                                                                                                                    | 06   | CO4 |
| UNIT-V   | PERFORMANCE OF TRANSMISSION LINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | CO  |
|          | Classification of lines based on length and voltage levels such as<br>short, medium and long lines, Representation of 'Tee' and 'Pi'<br>models of lines as two port networks, evaluation and estimation of<br>generalized circuit constants (ABCD) for short and medium lines,<br>Estimation of Efficiency & regulation of short & medium lines.                                                                                                                                                                             | 06   | CO5 |
| UNIT-VI  | VOLTAGE AND POWER FACTOR CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO  |
|          | Methods of voltage control, AVRs, tap changing transformers, causes<br>of low power factor, effects of low power factor, Shunt capacitors,<br>Correction, Ferranti effect Surge impedance loading, power flow                                                                                                                                                                                                                                                                                                                |      | CO6 |

2020 Pattern

| Text Books:                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|
| [T1] J. B. Gupta, "Transmission and Distribution", S. K. Kataria & Sons, New Delhi.                                                |
| [T2] V. K. Mehta, Rohit Mehta, "Principles of Power System", S. Chand Publication                                                  |
| [T3] J. B. Gupta, "Generation and Economic Considerations", S. K. Kataria & Sons, New Delhi.                                       |
| [T4] Dr. B. R. Gupta, "Generation of Electrical Energy", S. Chand Publication                                                      |
| [T5] A Chakraborty, M. L. Soni, P. V. Gupta, U.S. Bhatnagar, "A text book on Power System<br>Engineering", Dhanpatrai & Co. Delhi. |
| References:                                                                                                                        |
| [R1] Nagrath & Kothari, "Power System Engineering", Tata McGraw Hill Publications.                                                 |
| [R2] D. Das, "Electrical Power System", New Age Publication.                                                                       |
| [R3] W.D. Stevenson, "Power System Analysis", Tata McGraw Hill Publications.                                                       |
| [R4] Allen J Wood Bruce F. Wollenberg Gerald "Power generation operation and control" IEEE Wiley                                   |
| [R5] Alexandra Von Meier "Electric Power Systems: A Conceptual Introduction" Willy Survival Guides in                              |
| Engineering & Science                                                                                                              |
| https://onlinecourses.nptel.ac.in/noc22_ee17/preview_                                                                              |
| https://onlinecourses.nptel.ac.in/noc22_ee18/preview_                                                                              |
| https://onlinecourses.nptel.ac.in/noc22_ee41/preview_                                                                              |
|                                                                                                                                    |

Industrial visit: Minimum one visit to HV substations is recommended

# EE215: NUMERICAL COMPUTATIONS WITH SIGNALS AND SYSTEMS LABORATORY

| Teaching Scheme         | <b>Examination Scheme</b> |          |
|-------------------------|---------------------------|----------|
| Lectures: Hrs./Week     | Oral:                     | Marks    |
| Tutorial: Hrs./Week     | Practical:                | 50 Marks |
| Practical: 02 Hrs./Week | Term Work:                | Marks    |
| Credits: 1              | Total:                    | 50 Marks |

**Prerequisite Course:** 

1. Engineering Mathematics

## **Course Objectives**

- 1. Development of the strong foundation of signals and systems
- 2. Understand sampling theorem and its implications.
- 3. Development of strong foundation analytical mathematics
- 4. Study of various methods of numerical analysis of linear and non-linear problems
- 5. Use of method for solving the problems in engineering
- 6. Use of modern computing tool

# Course Outcomes (COs):

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                | Bloom's Taxonomy |               |  |
|-----|-------------------------------------------------------------------------------------------------------------------|------------------|---------------|--|
|     |                                                                                                                   | Level            | Descriptor    |  |
| CO1 | Implement programs for various numerical methods and signals transformation using modern computing tools          | 3                | Applying      |  |
| CO2 | Analyse various types of equations and apply appropriate numerical method to solve different nonlinear equations  | 4                | Analysing     |  |
| CO3 | Apply different numerical methods for interpolation and curve fitting.                                            | 3                | Applying      |  |
| CO4 | Generate various signals and systems using modern computing tools.                                                | 2                | Understanding |  |
| CO4 | Apply the Fourier, Laplace and Z- transform for analyse of continuous-time and discrete-time signals and systems. | 3                | Applying      |  |
| CO5 | Understand the process of sampling and the effects of under sampling.                                             | 2                | Understanding |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 1   | 2   | 3   | 1   | 1   | 1   | 1   | -    | 1    | 2    | 2    | -    |
| CO2   | 3                                                                                        | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO3   | 2                                                                                        | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO4   | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO5   | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |
| CO6   | 2                                                                                        | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | -    |

Sanjivani College of Engineering, Kopargaon

Page 45 of 59

2020 Pattern

|                                                                                                                                | Course Contents                                                                                                               |             |        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--|--|--|
| Minimun                                                                                                                        | 1 08 experiments should be conducted                                                                                          |             |        |  |  |  |
| Ex. No                                                                                                                         | Name of Experiment                                                                                                            | Hrs.        | COs    |  |  |  |
| 1                                                                                                                              | Introduction to computing software (Scilab/MATLAB)                                                                            | 02          | CO1    |  |  |  |
| 2                                                                                                                              | Basic operations on matrices                                                                                                  | 02          | CO1    |  |  |  |
| 3                                                                                                                              | Solution of Non-linear equations using Bi-section methods                                                                     | 02          | CO2    |  |  |  |
| 4                                                                                                                              | Solution of Non-linear equations using Newton-Raphson method                                                                  | 02          | CO2    |  |  |  |
| 5                                                                                                                              | First order curve fitting using Least square approximation                                                                    | 02          | CO3    |  |  |  |
| 6                                                                                                                              | Apply Newton Backward Interpolation method                                                                                    | 02          | CO3    |  |  |  |
| 7                                                                                                                              | Apply Newton Forward Interpolation method                                                                                     | 02          | CO3    |  |  |  |
| 8                                                                                                                              | Generating various signals and sequence                                                                                       | 02          | CO4    |  |  |  |
| 9                                                                                                                              | Fourier transforms and inverse Fourier transform                                                                              | 02          | CO5    |  |  |  |
| 10                                                                                                                             | 10Laplace transforms                                                                                                          |             | CO5    |  |  |  |
| 11                                                                                                                             | Z-transforms                                                                                                                  | 02          | CO5    |  |  |  |
| 12                                                                                                                             | Verification of Sampling Theorem                                                                                              | 02          | CO6    |  |  |  |
|                                                                                                                                |                                                                                                                               |             |        |  |  |  |
| 5th edition<br>[T2] Kat                                                                                                        | Nagrath, M. Gopal, "Control System Engineering", New Age Interna                                                              | 010.        | shers, |  |  |  |
| Reference                                                                                                                      |                                                                                                                               |             |        |  |  |  |
|                                                                                                                                | . Gopal, "Control Systems: Principles and Design", McGraw Hill Edu<br>C. Kuo, "Automatic Control System", Prentice Hall, 1995 | cation, 199 | 7.     |  |  |  |
| <b>E-Referen</b>                                                                                                               | ces                                                                                                                           |             |        |  |  |  |
| II         https://nptel.ac.in/courses/107/106/107106081/           [2]         https://nptel.ac.in/courses/108/106/108106098/ |                                                                                                                               |             |        |  |  |  |

# **EE216: NETWORK ANALYSIS LABORATORY**

| пеаспи                                         | ng Scheme Examin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nation Scheme                                                                  |                                                                                                        |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                | es: Hrs./Week Oral:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | Marks                                                                                                  |  |  |  |  |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Practical: 50 Mar                                                              |                                                                                                        |  |  |  |  |
| Practic                                        | al: 02 Hr/Week Term V                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Term Work: Mark                                                                |                                                                                                        |  |  |  |  |
| Credits                                        | : 1 Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | 50 Marks                                                                                               |  |  |  |  |
| Prerec                                         | quisite Course:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                        |  |  |  |  |
| Course                                         | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                                                        |  |  |  |  |
| 1. To                                          | develop the strong foundation for Electrical Networks.                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                        |  |  |  |  |
| 2. To                                          | develop analytical qualities in Electrical circuits by application c                                                                                                                                                                                                                                                                                                                                                                                                                                | of                                                                             |                                                                                                        |  |  |  |  |
| vario                                          | us theorems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                                                        |  |  |  |  |
|                                                | understand the behaviour of circuits by analysing the transient re                                                                                                                                                                                                                                                                                                                                                                                                                                  | esponse                                                                        |                                                                                                        |  |  |  |  |
| U                                              | classical methods and Laplace Transform approach.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |                                                                                                        |  |  |  |  |
|                                                | understand basic concept of Graph theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                        |  |  |  |  |
|                                                | apply knowledge of Network theory for analysis of 2-port netwo                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                        |  |  |  |  |
| 6. 10 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                                                                                        |  |  |  |  |
|                                                | apply knowledge of Network theory for designing Low-pass and                                                                                                                                                                                                                                                                                                                                                                                                                                        | high pass filter.                                                              |                                                                                                        |  |  |  |  |
| Course                                         | Outcomes (COs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | high pass filter.                                                              |                                                                                                        |  |  |  |  |
| Course                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | high pass filter.                                                              |                                                                                                        |  |  |  |  |
| Course                                         | Outcomes (COs):<br>accessful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | n's Taxonomy                                                                                           |  |  |  |  |
| Course                                         | Outcomes (COs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | n's Taxonomy<br>Descript                                                                               |  |  |  |  |
| Course                                         | Outcomes (COs):<br>accessful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                      | Bloon<br>Level                                                                 | Descript<br>or                                                                                         |  |  |  |  |
| Course                                         | Outcomes (COs):<br>accessful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                      | Bloon                                                                          | Descript                                                                                               |  |  |  |  |
| Course<br>After su<br>CO1                      | Outcomes (COs):<br>accessful completion of the course, student will be able to<br>Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                | Bloon<br>Level<br>3                                                            | Descript<br>or                                                                                         |  |  |  |  |
| Course<br>After su                             | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory                                                                                                                                                                                                                                                                                                                                 | Bloon<br>Level<br>3                                                            | Descript<br>or           Applying                                                                      |  |  |  |  |
| Course<br>After su<br>CO1<br>CO2               | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory         Use the knowledge of problem-solving technique for network by application of theorems for DC and AC circuits.                                                                                                                                                                                                           | Bloon<br>Level<br>3                                                            | Descript<br>or           Applying                                                                      |  |  |  |  |
| Course<br>After su<br>CO1<br>CO2<br>CO3        | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory         Use the knowledge of problem-solving technique for network by application of theorems for DC and AC circuits.         Analyze the behaviour of the network by transient response                                                                                                                                        | Bloon<br>Level<br>3<br>xs 3<br>4                                               | Descript<br>or           Applying           Applying           Applying           Analysing            |  |  |  |  |
| Course<br>After su<br>CO1<br>CO2               | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory         Use the knowledge of problem-solving technique for network         by application of theorems for DC and AC circuits.         Analyze the behaviour of the network by transient response         Demonstrate of Standard test inputs and transformed network                                                            | Bloon           Level           3           xs         3           4         3 | Descript<br>or           Applying           Applying           Analysing           Applying            |  |  |  |  |
| Course<br>After su<br>CO1<br>CO2<br>CO3        | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory         Use the knowledge of problem-solving technique for network by application of theorems for DC and AC circuits.         Analyze the behaviour of the network by transient response         Demonstrate of Standard test inputs and transformed network         Understand the behaviour of the network by analysing two p | Bloon           Level           3           xs         3           4         3 | Descript<br>or         Applying         Applying         Analysing         Applying         Understand |  |  |  |  |
| Course<br>After su<br>CO1<br>CO2<br>CO3<br>CO4 | Outcomes (COs):         accessful completion of the course, student will be able to         Course Outcome (s)         Demonstrate strong basics for network theory         Use the knowledge of problem-solving technique for network         by application of theorems for DC and AC circuits.         Analyze the behaviour of the network by transient response         Demonstrate of Standard test inputs and transformed network                                                            | Bloon           Level           3           xs         3           4         3 | Descript<br>or           Applying           Applying           Analysing           Applying            |  |  |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      | ):   |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | -   | -   | 2   | -   | -   | -   | 2   | 2    | -    | -    | 2    | 2    |
| CO2   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2    | -    | -    | 2    | 2    |
| CO3   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2    | -    | -    | 2    | 2    |
| CO4   | 3                                                                                        | 3   | -   | -   | 2   | -   | -   | -   | 2   | 2    | -    | -    | 2    | 2    |
| CO5   | 3                                                                                        | 3   | -   | -   | 1   | -   | -   | -   | 2   | 2    | -    | -    | 2    | 2    |
| CO6   | 3                                                                                        | 2   | -   | -   | 1   | -   | -   | -   | 2   | 1    | -    | -    | 2    | 2    |

|              | Course Contents                                                                                                                                                                                                              |              |              |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Enon         | Name of the Experiment                                                                                                                                                                                                       | Hrs.         | COs          |
| 1            | Study of mesh, nodal analysis                                                                                                                                                                                                | 2            | CO1          |
| 2            | Study of Graph network Theory                                                                                                                                                                                                | 2            | CO1          |
| 3            | Verification of Superposition theorem in D.C &A.C. circuits.                                                                                                                                                                 | 2            | CO2          |
| 4            | Verification of Thevenin's theorem in DC &A.C. circuits.                                                                                                                                                                     | 2            | CO2          |
| 5            | Verification of Reciprocity theorem in DC&A.C. circuits                                                                                                                                                                      | 2            | CO2          |
| 6            | Verification of Millman's' theorem.                                                                                                                                                                                          | 2            | CO2          |
| 7            | Verification of Maximum Power Transfer theorem.                                                                                                                                                                              | 2            | CO2          |
| 8            | Study of time response of R-L, R-C circuit to a step D.C. voltage input.                                                                                                                                                     | 2            | CO3          |
| 9            | Study of R-L, R-C circuit to a step D.C. voltage input using<br>Laplace domain                                                                                                                                               | 2            | CO4          |
| 10           | Study determination of parameter of Two Port Network.                                                                                                                                                                        | 2            | CO5          |
| 11           | Study the Frequency response of constant K- low pass filters                                                                                                                                                                 | 2            | CO6          |
| 12           | Study the Frequency response of constant K- high pass filters.                                                                                                                                                               | 2            | CO6          |
| 2. DF<br>pub | E. Van Valkenburg, "Network Analysis", Prentice Hall of India Privat<br>Roy Choudhary, "Network and Systems", New age international<br>blishers. Abhijit Chakrabarti, "Circuit Theory", DhanpatRai and<br>mpany, 7th edition | e Limited, 7 | Third Editio |
|              | liam H. Hayt, Jr. Jack E. Kemmerly, "Engineering Circuit Analysis".                                                                                                                                                          | McGraw       |              |
| Hill Publi   |                                                                                                                                                                                                                              |              |              |

John O' Malley, "Schaum's outline of Theorems and Problems of Basic Circuit Analysis", McGraw Hill Publication.

# **EE217: ELECTRICAL MACHINES I LABORATORY**

| Teaching Scheme         | <b>Examination Scheme</b> |          |
|-------------------------|---------------------------|----------|
| Lectures: Hrs./Week     | Oral:                     | Marks    |
| Tutorial: Hrs./Week     | Practical:                | 50 Marks |
| Practical: 02 Hrs./Week | Term Work:                | Marks    |
| Credits: 1              | Total:                    | 50 Marks |

## **Prerequisite Course:**

- 1. Basic Electrical Engineering.
- 2. Basic circuital Laws.

## **Course Objectives**

- 1. Understanding the concepts of magnetic circuits.
- 2. Analysis of single phase and three phase transformers circuits.
- 3. Understanding the operation of dc machines.
- 4. Analysis of differences in operation of different dc& induction machine configurations.

# **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                                | Bloom's Taxonomy |               |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|--|
|     |                                                                                                                                                   | Level            | Descriptor    |  |  |  |
| CO1 | Understand basic laws & concepts of magnetic circuits                                                                                             | 2                | Understanding |  |  |  |
| CO2 | Apply energy conversion principles to Single phase transformer,<br>its equivalent circuit & operations                                            | 3                | Applying      |  |  |  |
| CO3 | Understand basic connections of three-phase transformer and parallel operation of transformer and comparison                                      | 2                | Understanding |  |  |  |
| CO4 | Identify and demonstrate the components of D.C. machine and its<br>working as a motor to test the various machine for performance<br>calculation. | 4                | Analyze       |  |  |  |
| CO5 | Understand the Characteristics and applications of D.C. Shunt<br>and Series Motors and the process of commutation.                                | 2                | Understanding |  |  |  |
| CO6 | Understand Induction motors & their operation based on Speed,<br>Slip, Torque, Power, and efficiency.                                             | 2                | Understanding |  |  |  |

|     | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                        | 2   | 1   |     |     |     |     | 1   |     |      | 1    | 2    | 3    | 2    |
| CO2 | 3                                                                                        | 2   | 2   | 1   |     |     |     | 1   |     |      | 2    | 2    | 3    | 2    |
| CO3 | 3                                                                                        | 2   | 1   |     | 1   |     |     | 1   |     |      | 1    | 2    | 3    | 2    |
| CO4 | 3                                                                                        | 2   | 1   | 1   | 1   |     |     | 1   |     |      | 1    | 2    | 3    | 2    |
| CO5 | 3                                                                                        | 2   | 1   | 1   | 1   |     |     | 1   |     |      | 1    | 2    | 3    | 2    |
| CO6 | 3                                                                                        | 2   | 1   | 2   | 2   |     |     | 1   |     |      | 2    | 2    | 3    | 2    |

Sanjivani College of Engineering, Kopargaon

| Name of Experiment (Any 8 Experiments)         O.C. and S.C. test on single phase Transformer.         Polarity test on single-phase and three-phase transformer | <b>Hrs.</b><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>COs</b><br>CO1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O.C. and S.C. test on single phase Transformer.                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Polarity test on single-phase and three-phase transformer                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Polarity test on single-phase and three-phase transformer                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Polarity test on single-phase and three-phase transformer                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parallel operation of two single-phase transformers and study of their                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| load sharing under various conditions of voltage ratios and leakage                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| impedances.                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Speed control of D.C. Shunt motor and study of starters.                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Brake test on D.C. Shunt motor                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Load characteristics of D.C. series motor                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Load test on a 3-phase induction motor.                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СОЗ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Determination of sequence impedance of the transformer.                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO3,<br>CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s:                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| d Hughes "Electrical Technology", ELBS, Pearson Education.                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| q Husain, "Electrical Machines", Dhanpat Rai & Sons.                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Shattacharya, "Electrical Machine", Tata McGraw Hill Publishing Co. Ltd                                                                                          | ,2nd Edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| th & Kothari, "Electrical Machines", Tata McGraw Hill.                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  | ess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hennai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S:                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Clayton and N. N. Hancock, "Performance and Design of Direct Current M                                                                                           | lachines",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Publishers, Third Edition.                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  | ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • • • •                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                  | Speed control of D.C. Shunt motor and study of starters.         Brake test on D.C. Shunt motor         Load characteristics of D.C. series motor         Load test on a 3-phase induction motor.         No-load & blocked-rotor test on 3-phase induction motor:         a) Determination of parameters of equivalent circuit.         b) Plotting of circle diagram.         Calculation of motor performance from (a) Determination of parameters of equivalent circuit & (b) Plotting of circle diagram above.         Determination of sequence impedance of the transformer.         s:         d Hughes "Electrical Technology", ELBS, Pearson Education.         q Husain, "Electrical Machines", Dhanpat Rai & Sons.         Bhattacharya, "Electrical Machines", Tata McGraw Hill Publishing Co. Ltd th & Kothari, "Electrical Machines", Tata McGraw Hill.         S Guru, Husein R. Hiziroglu, "Electrical Machines", Oxford University Pr thna Reddy, "Electrical Machines- I and II", SCITECH Publications (India Science).         Layton and N. N. Hancock, "Performance and Design of Direct Current M ublishers, Third Edition.         itzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", Tata McGraw Hill Say, "Performance and Design of DC machines", Tata McGraw Hill Say, "Performance and Design of AC. Machines", CBS Publishers and Direct Say, "Performance and Design of AC. Machines", CBS Publishers and Direct Say, "Performance and Design of AC. Machines", CBS Publishers and Direct Say, "Performance and Design of AC. Machines", CBS Publishers and Direct Say, "Performance and Design of AC. Machines", CBS Publishers and Di | Speed control of D.C. Shunt motor and study of starters.       2         Brake test on D.C. Shunt motor       2         Load characteristics of D.C. series motor       2         Load test on a 3-phase induction motor.       2         No-load & blocked-rotor test on 3-phase induction motor:       2         a) Determination of parameters of equivalent circuit.       2         b) Plotting of circle diagram.       2         Calculation of motor performance from (a) Determination of parameters of equivalent circuit & (b) Plotting of circle diagram above.       2         Determination of sequence impedance of the transformer.       2         S:       2         d Hughes "Electrical Technology", ELBS, Pearson Education.       4         q Husain, "Electrical Machines", Dhanpat Rai & Sons.       3         Bhattacharya, "Electrical Machines", Tata McGraw Hill Publishing Co. Ltd,2nd Edition th & Kothari, "Electrical Machines", Tata McGraw Hill.         S Guru, Husein R. Hiziroglu, "Electrical Machines", Oxford University Press.         han Reddy, "Electrical Machines- I and II", SCITECH Publications (India) Pvt. Ltd. C         S:         'layton and N. N. Hancock, "Performance and Design of Direct Current Machines", ublishers, Third Edition.         angsdorf, "Theory and performance of DC machines", Tata McGraw Hill.         Say, "Performance and Design of AC. Machines", CBS Publishers and Distributors. |

|                |                                                                                                                                           | E                  | E218     | : PO      | WER      | SYS      | STEN      | 1 I L    | ABO        | RAT      | ORY      |          |               |         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|----------|----------|-----------|----------|------------|----------|----------|----------|---------------|---------|
|                | ing Sch                                                                                                                                   |                    |          |           |          |          |           | E        | xamin      | ation S  | cheme    |          |               |         |
|                | res: I                                                                                                                                    |                    |          |           |          |          |           |          | )ral:      |          |          |          |               | Marks   |
| Tutor          | ial: H                                                                                                                                    | r/Wee              | k        |           |          |          |           | P        | ractica    | ıl:      |          |          |               | Marks   |
| Practi         | ical: 02                                                                                                                                  | Hr/We              | ek       |           |          |          |           | Τ        | erm W      | 'ork:    |          |          |               | Marks   |
| Credi          |                                                                                                                                           |                    |          |           |          |          |           |          | otal:      |          |          |          | 50            | Marks   |
|                | Prerequisite Course: Students should have knowledge of Basics of Electrical Engineering. Course Objectives                                |                    |          |           |          |          |           |          |            |          |          |          |               |         |
| Cours          | se Obje                                                                                                                                   | ctives             |          |           |          |          |           |          |            |          |          |          |               |         |
|                | 1. To make students understand basic structure and requirements of any electric power system.                                             |                    |          |           |          |          |           |          |            |          |          |          |               |         |
|                | 2. To understand various electrical terms related with power system and understand various types of                                       |                    |          |           |          |          |           |          |            |          |          |          |               |         |
|                | <ul><li>tariffs.</li><li>3. To understand specifications and applications of major electrical equipment present in power plant.</li></ul> |                    |          |           |          |          |           |          |            |          |          |          |               |         |
|                | 4. It i                                                                                                                                   | s aimed            | to impa  | rt know   | ledge al | bout nat | ture of p | ower sy  | stems e    | ngineer  | ing and  | the pro  | ofession i    | mpact.  |
|                |                                                                                                                                           |                    |          |           |          |          |           |          | idies in j |          |          | ×        |               | *       |
| Cours          | se Outco                                                                                                                                  | omes (O            | COs):    |           |          |          |           |          |            |          |          |          |               |         |
| After          | successf                                                                                                                                  | ul com             | pletion  | of the    | course,  | studer   | ıt will b | e able   | to         |          |          |          |               |         |
| Course Outcome |                                                                                                                                           |                    |          |           |          |          |           |          |            |          | Blo      | om's ]   | Faxonor       | ny      |
|                |                                                                                                                                           |                    | (9       |           | Outco    | inc      |           |          |            |          | Level    |          | Desci         | riptor  |
| CO1            |                                                                                                                                           | rstand             |          |           |          | -        |           | •        | ectric     |          |          |          |               |         |
| COI            | power system & various electrical terms related with<br>power System and understand various types of tariffs.                             |                    |          |           |          |          |           |          |            | 2        |          | Underst  | tanding       |         |
|                |                                                                                                                                           |                    |          |           |          |          |           |          |            |          |          |          |               |         |
| CO2            | Unde                                                                                                                                      | rstand             | major e  | electrica | al equip | oment's  | s in pov  | ver stat | ions       |          | 2        |          | Understanding |         |
| CO3            | -                                                                                                                                         |                    | -        |           | s of me  | echanic  | al desig  | gn of o  | verhead    | 1        | 2        |          | Underst       | tanding |
|                |                                                                                                                                           | power              | 2        |           | 4 0      | 4        | · 1       |          |            |          |          |          |               |         |
| CO4            |                                                                                                                                           | ing of v<br>in pow |          |           | nent &   | transm   | 15510n    | ine par  | ameter     | s        | 2        |          | Underst       | tanding |
| <b>GO7</b>     |                                                                                                                                           |                    | -        |           | perfor   | mance    | and eco   | onomic   | operat     | ion      | _        |          | 1             |         |
| C05            |                                                                                                                                           | ower sy            |          |           | 1        |          |           |          | 1          |          | 5        |          | Evalu         | ating   |
| 606            | Class                                                                                                                                     | ify type           | es of fe | eders, o  | cables,  | voltage  | e and P.  | F. cont  | rol        |          | 4        |          | . 1           | •       |
| CO6            | Meth                                                                                                                                      | ods                |          |           |          | -        |           |          |            |          | 4        |          | Analy         | ysing   |
|                |                                                                                                                                           | 0                  |          |           | 0        |          |           | D        | ~ `        |          | 17       |          |               |         |
| Mappir         | ng of Cou                                                                                                                                 |                    |          | 0         |          |          |           | 0        | -          |          | ,        |          |               |         |
|                | PO1                                                                                                                                       | PO2                | PO3      | PO4       | PO5      | PO6      | PO7       | PO8      | PO9        | PO<br>10 | PO<br>11 | PO<br>12 | PSO1          | PSO2    |
| CO1            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |
| CO2            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |
| CO3            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |
| CO4            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |
| CO5            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |
| CO6            | 3                                                                                                                                         | 2                  | -        | -         | -        | -        | -         | -        | -          | -        | -        | 2        | 2             | 2       |

Sanjivani College of Engineering, Kopargaon

Page 51 of 59

| Course<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                  |          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--|--|--|--|--|
| Ex.<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name of experiment                                                                                                                                                                                                                                                                                | Hrs.             | COs      |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Visit Local Substation                                                                                                                                                                                                                                                                            | 2                | CO2      |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Study of cables & find charging current                                                                                                                                                                                                                                                           | 2                | CO6      |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Study of different types of insulators                                                                                                                                                                                                                                                            | 2                | CO3      |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Study of Tariffs                                                                                                                                                                                                                                                                                  |                  |          |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To study the Ferranti Effect of a Transmission line.                                                                                                                                                                                                                                              | 2                | CO5      |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To find out the string efficiency across the string of insulators                                                                                                                                                                                                                                 | 2                | CO3, CO5 |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To study the effects on transmission line simulator for Shunt<br>Reactor Compensation for Unloaded Line                                                                                                                                                                                           | 2                | CO3, CO5 |  |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Determine A, B, C, D parameters of short and medium transmission line.                                                                                                                                                                                                                            | 2                | CO4, CO5 |  |  |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Introduction to simulation of power system using various tools                                                                                                                                                                                                                                    | 2                | CO6      |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Efficiency, Regulation & ABCD parameters of Transmission line                                                                                                                                                                                                                                     | 2                | CO4, CO5 |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To study various effects on Loading of transmission line                                                                                                                                                                                                                                          | 2                | CO3, CO5 |  |  |  |  |  |
| LAB INS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRUCTION:                                                                                                                                                                                                                                                                                         |                  |          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At least eight experiments should be performed.                                                                                                                                                                                                                                                   |                  |          |  |  |  |  |  |
| [T2] V. K.<br>[T3] J. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ks:<br>Gupta, "Transmission and Distribution", S. K. Kataria & Sons, New D<br>Mehta, Rohit Mehta, "Principles of Power System", S. Chand Publica<br>Gupta, "Generation and Economic Considerations", S. K. Kataria & S<br>[] Dr. B. R. Gupta, "Generation of Electrical Energy's. Chand Publicati | tion<br>ons, New |          |  |  |  |  |  |
| [T5] A<br>Engineeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chakraborty, M. L. Soni, P. V. Gupta, U.S. Bhatnagar, "A text book on ng", DhanpatRai & Co. Delhi.                                                                                                                                                                                                |                  | vstem    |  |  |  |  |  |
| <ul> <li>Engineering", DhanpatRai &amp; Co. Delhi.</li> <li>References:</li> <li>[R1] Nagrath &amp; Kothari, "Power System Engineering", Tata McGraw Hill</li> <li>Publications. [R2] D. Das, "Electrical Power System", New Age Publication.</li> <li>[R3] W.D. Stevenson, "Power System Analysis", Tata McGraw Hill Publications.</li> <li>[R4] Allen J Wood Bruce F. Wollenberg Gerald "Power generation operation and control" IEEE</li> <li>Wiley</li> <li>[R5] Alexandra Von Meier "Electric Power Systems: A Conceptual Introduction" Willy Survival Guides</li> </ul> |                                                                                                                                                                                                                                                                                                   |                  |          |  |  |  |  |  |

|        | EE219: SEMINAR / MINI PRO                                                                                                                                                                                                                                                                                                                     | JECT               |               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| Teachi | ing Scheme Examina                                                                                                                                                                                                                                                                                                                            | ation Scheme       |               |
|        | cal: 02 Hrs./Week Term-W                                                                                                                                                                                                                                                                                                                      | ork:               | 50 Marks      |
| Credit | s: 1 Total:                                                                                                                                                                                                                                                                                                                                   |                    | 50 Marks      |
| Prere  | equisite Course:                                                                                                                                                                                                                                                                                                                              |                    |               |
| Course | e Objectives                                                                                                                                                                                                                                                                                                                                  |                    |               |
|        | <ol> <li>Gaining of actual knowledge (terminology, classification, m</li> <li>Learning fundamental principles, generalization, or theories</li> <li>Discussion and critical thinking about topics of current intel</li> <li>Developing specific skills, competencies, and points of view field most closely related to the course.</li> </ol> | lectual importance | e             |
|        | e Outcomes (COs):<br>uccessful completion of the course, student will be able to                                                                                                                                                                                                                                                              |                    |               |
|        | Course Outcome (s)                                                                                                                                                                                                                                                                                                                            |                    | 's Taxonomy   |
|        |                                                                                                                                                                                                                                                                                                                                               | Level              | Descriptor    |
| CO1    | Identify advanced technical areas in the fields of science technology                                                                                                                                                                                                                                                                         | 2                  | Understanding |
| CO2    | Relate with the current technologies and innovations in Electron engineering                                                                                                                                                                                                                                                                  | ical 3             | Applying      |
| CO3    | Apply theoretical knowledge to actual industrial and resea<br>activity                                                                                                                                                                                                                                                                        | arch 3             | Applying      |
| CO4    | Discuss and critically analyse about topics of current intellec importance                                                                                                                                                                                                                                                                    | tual 4             | Analysing     |
| CO5    | Document technical report                                                                                                                                                                                                                                                                                                                     | 3                  | Applying      |
| CO6    | Present technical documentation and presentation                                                                                                                                                                                                                                                                                              | 5                  | Evaluating    |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |          |          |          |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO2 |
| CO1    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1        | 1        | 1        | 1    | 1    |
| CO2    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1        | 1        | 1        | 1    | 1    |
| CO3    | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 1        | 1        | 1        | 1    | 1    |
| CO4    | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 2        | 1        | 1        | 1    | 1    |
| CO5    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2        | 1        | 1        | 1    | 1    |
| CO6    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2        | 1        | 1        | 1    | 1    |

Sanjivani College of Engineering, Kopargaon

| Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A. Guidelines for Students: <ol> <li>Seminar / Mini Project group shall consist of not more than 3 students per group</li> <li>Individual student have to present topic.</li> <li>Seminar / Mini Project topic should be innovative, emerging, and current issues addressed.</li> <li>Seminar / Mini Project should collect all information related with topic with authentic and validate proofs.</li> <li>Students should work according to the directions given by guides.</li> </ol> </li> </ul>                                                                                                                                                                                        |
| <ul> <li>B. Domains for Seminar / Mini Project may be from the following, but not limited to: <ul> <li>Power Systems</li> <li>Power/Smart Grid</li> <li>Electric automobile</li> <li>Computer/Communication Networking</li> <li>IOT</li> <li>AI in Electrical Engineering</li> <li>Microcontroller based/Embedded systems</li> <li>Power electronics and drives</li> <li>High Voltage Engineering</li> <li>Agriculture Engineering</li> <li>Battery Technology's</li> <li>Robotics/Mechatronics/Process Automation</li> <li>Energy efficiency technique</li> <li>Green / Clean energy</li> </ul></li></ul>                                                                                           |
| <ul> <li>C. Monitoring: Suggested Plan for various activities to be monitored by the teacher.</li> <li>Week 1 &amp; 2: Finalization of Seminar / Mini Project topic with broad literature survey<br/>Week 3 &amp; 4: Literature Survey and Abstract<br/>Week 5 to 6: Software / Hardware development<br/>Week 6 to 7: Intermediate review in front of Internal Assessment Panel<br/>Week 8 &amp; 9: Preparation of results and conclusions<br/>Week 10 &amp; 11: Preparation of report and presentation<br/>Week 12 &amp; 13: Present seminar and submit report</li> <li>Note: - Log book for all these activities shall be maintained. It is mandatory to submit the seminar<br/>report.</li> </ul> |
| <ul> <li>D. Report writing: A report with following contents shall be prepared:</li> <li>Contents <ol> <li>Cover Page &amp; Title Page</li> <li>Certificate</li> <li>Abstract</li> <li>Acknowledgments</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

- 5. List of figures
- 6. List of tables
- 7. Abbreviations

Sanjivani College of Engineering, Kopargaon

- 8. Contents
- 9. Chapters
- 10. Appendix
- 11. References

# Journals to Refer like but not limited to:

- IEEE transactions
- IEEE magazines/ newsletters/ proceedings
- IET Proceedings/ journals/ magazines
- Elsevier journals and magazines
- Electrical power components and systems journal (ISSN 1532-5016, 1532-5008), published by Taylor and Francis group, USA.
- Cogeneration and distributed generation journal (ISSN 1066-8683, 1545-7575), published by Fairmont press Inc. USA.
- Digital technical journal (ISSN 0898-901X), published by Digital equipment corporation, USA.
- Journal of Institution of Engineers India Electrical Engineering
- The Journal of the Institute of Electrical Engineers of Japan
- The Transactions of the Institute of Electrical Engineers of Japan
- Japanese journal of Applied physics
- Circuits, Systems & Signal Processing –Springer ISSN 0278-081X
- Energy Efficiency Springer ISSN 1570-646X
- Electrical Engineering · Archiv für Elektrotechnik Springer ISSN 0948-7921
- Engineering with Computers · An International Journal for Simulation-Based
- Engineering Springer ISSN 0177-0667
- Journal of Control Theory and Applications –Springer ISSN 1672-6340
- Journal of Dynamical and Control Systems Springer ISSN 1079-2724
- Journal of Real-Time Image Processing Springer ISSN 1861-8200
- Mathematics of Control, Signals, and Systems Springer ISSN 0932-4194

# **EE220: PROFESSIONAL DEVELOPMENT**

| -                                                 |                                         |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
|---------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------|----------------|----------------|----------------|----------|--------------------|-------------------------------|--------------------------------|---------------------------------------|-----|--|--|--|
|                                                   | ig Sche                                 |                                          |                                                    |                                                   |                                              |                     |                |                |                | inatio   |                    | me                            |                                |                                       |     |  |  |  |
| Practic                                           |                                         | Irs./V                                   | Veek                                               |                                                   |                                              |                     |                |                |                | Work     | :                  |                               |                                | 50 Mar                                |     |  |  |  |
| Credits                                           | :1                                      |                                          |                                                    |                                                   |                                              |                     |                |                | Total:         |          |                    |                               | 4                              | 50 Mar                                | 'ks |  |  |  |
| Prereq                                            |                                         |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
|                                                   | nowled                                  | <u> </u>                                 | progra                                             | mming                                             | g langu                                      | age                 |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| Course                                            | U U                                     |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| 1. Competence in technical writing                |                                         |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| 2. Quality Scientific and Technical Documentation |                                         |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
|                                                   | Effectiv                                | -                                        |                                                    | •                                                 |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| 4. 1                                              | Underst                                 | and b                                    | oasic co                                           | oncepts                                           | of res                                       | earch a             | ind its i      | nethod         | lologie        | S        |                    |                               |                                |                                       |     |  |  |  |
| Course                                            | Outoo                                   | most                                     |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| Course                                            |                                         |                                          |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| After su                                          | ccessfu                                 | l com                                    | pletion                                            | n of the                                          | e cours                                      | e, stud             | ent wil        | l be abl       | le to          |          |                    |                               |                                |                                       |     |  |  |  |
|                                                   |                                         |                                          |                                                    |                                                   | Outor                                        |                     |                |                |                |          | H                  | Bloom'                        | 's Taxo                        | nomy                                  |     |  |  |  |
|                                                   |                                         |                                          | ,                                                  | Jourse                                            | Outco                                        | ome (s)             | ,              |                |                |          | Le                 | Level Descripto               |                                |                                       | r   |  |  |  |
| <b>CO1</b>                                        | Und                                     | erstan                                   | nd the b                                           | oasic co                                          | oncepts                                      | of tec              | hnical         | docum          | entatio        | n        |                    | 2 Understan                   |                                | erstandi                              | ng  |  |  |  |
| ~                                                 | Anal                                    | vse te                                   | chnica                                             | l litera                                          | ture                                         |                     |                |                |                |          |                    |                               |                                |                                       |     |  |  |  |
| $CO_{2}$                                          |                                         | Analyse technical literature4Evaluating  |                                                    |                                                   |                                              |                     |                |                |                |          |                    |                               | Eve                            | T                                     |     |  |  |  |
| CO2                                               |                                         | -                                        |                                                    |                                                   |                                              | 1 /1                | •              | 1              |                |          |                    |                               |                                |                                       |     |  |  |  |
| CO3                                               | Writ                                    | e effe                                   | ective to                                          | echnica                                           | al resea                                     |                     | esis, ar       | nd repo        | rt             |          | ,                  | 3                             | Aţ                             | oplying                               |     |  |  |  |
| CO3<br>CO4                                        | Write<br>Use                            | e effe<br>Mode                           | ective to<br>ern Tecl                              | echnica<br>hnical                                 | al resea<br>Softwa                           |                     | esis, ar       | nd repo        | rt             |          |                    | 3 4                           | Ap<br>An                       | oplying<br>alysing                    | 5   |  |  |  |
| CO3                                               | Write<br>Use                            | e effe<br>Mode                           | ective to                                          | echnica<br>hnical                                 | al resea<br>Softwa                           |                     | esis, ar       | nd repo        | rt             |          |                    | 3                             | Ap<br>An                       | oplying                               | 5   |  |  |  |
| CO3<br>CO4                                        | Write<br>Use                            | e effe<br>Mode                           | ective to<br>ern Tecl                              | echnica<br>hnical                                 | al resea<br>Softwa                           |                     | esis, ar       | nd repo        | rt             |          |                    | 3 4                           | Ap<br>An                       | oplying<br>alysing                    | 5   |  |  |  |
| CO3<br>CO4<br>CO5                                 | Write<br>Use<br>Anal                    | e effe<br>Mode<br>lyse a                 | ective to<br>ern Teci<br>nd Visi                   | echnica<br>hnical<br>ualise ]                     | al resea<br>Softwa<br>Data                   | re                  |                |                |                |          |                    | 3<br>4<br>4                   | An<br>An<br>An                 | oplying<br>alysing                    | 5   |  |  |  |
| CO3<br>CO4                                        | Writ<br>Use<br>Anal                     | e effe<br>Mode<br>lyse a<br>urse O       | ective te<br>ern Tec<br>nd Vist                    | echnica<br>hnical<br>ualise l<br>es to Pro        | al resea<br>Softwa<br>Data<br>ogram (        | re<br>Dutcom        | es (POs        | ) & Pro        | gram S         | •        | Outcon             | 3<br>4<br>4<br>nes (PS)       | Aı<br>An<br>An<br>Os):         | oplying<br>alysing<br>alysing         | 5   |  |  |  |
| CO3<br>CO4<br>CO5                                 | Writ<br>Use<br>Anal                     | e effe<br>Mode<br>lyse a                 | ective to<br>ern Teci<br>nd Visi                   | echnica<br>hnical<br>ualise ]                     | al resea<br>Softwa<br>Data                   | re                  |                |                |                | PO       | Outcon             | 3<br>4<br>4<br>nes (PS)<br>PO | An<br>An<br>An                 | oplying<br>alysing                    | 5   |  |  |  |
| CO3<br>CO4<br>CO5<br>Mappin                       | Write<br>Use<br>Anal<br>g of Cou<br>PO1 | e effe<br>Mode<br>yse a<br>arse O<br>PO2 | ective te<br>ern Tec<br>nd Vist                    | echnica<br>hnical<br>ualise l<br>es to Pro<br>PO4 | al resea<br>Softwa<br>Data<br>ogram C<br>PO5 | re<br>Dutcom        | es (POs<br>PO7 | ) & Pro        | ogram S<br>PO9 | PO<br>10 | Outcon<br>PO<br>11 | 3<br>4<br>4<br>9<br>12        | Aı<br>An<br>An<br>Os):<br>PSO1 | pplying<br>alysing<br>alysing<br>PSO2 | 5   |  |  |  |
| CO3<br>CO4<br>CO5                                 | Writ<br>Use<br>Anal                     | e effe<br>Mode<br>lyse a<br>urse O       | ective te<br>ern Tec<br>nd Vist                    | echnica<br>hnical<br>ualise l<br>es to Pro        | al resea<br>Softwa<br>Data<br>ogram (        | re<br>Dutcom        | es (POs        | ) & Pro        | gram S         | PO       | Outcon             | 3<br>4<br>4<br>nes (PS)<br>PO | Aı<br>An<br>An<br>Os):         | oplying<br>alysing<br>alysing         | 5   |  |  |  |
| CO3<br>CO4<br>CO5<br>Mappin                       | Write<br>Use<br>Anal<br>g of Cou<br>PO1 | e effe<br>Mode<br>yse a<br>arse O<br>PO2 | ective to<br>ern Teci<br>nd Visi<br>outcome<br>PO3 | echnica<br>hnical<br>ualise l<br>es to Pro<br>PO4 | al resea<br>Softwa<br>Data<br>ogram C<br>PO5 | re<br>Dutcom<br>PO6 | es (POs<br>PO7 | ) & Pro<br>PO8 | ogram S<br>PO9 | PO<br>10 | Outcon<br>PO<br>11 | 3<br>4<br>4<br>9<br>12        | Aı<br>An<br>An<br>Os):<br>PSO1 | pplying<br>alysing<br>alysing<br>PSO2 | 5   |  |  |  |

## **Course Contents**

Technology has shown tremendous growth during the last two decades and quality of technical education system is under criticism. This course aims at enabling the learners to acquire the capabilities of selecting and defining technical problem, describing the methodology, collecting the data, and analysing and interpreting the results to conduct the demonstration effectively. After successful completion of this course the learner will have a conceptual understanding of research, its need and ethical research practices, the methods, and techniques of qualitative research to the learner. Facilitate

Sanjivani College of Engineering, Kopargaon

CO4

CO5

them to apply statistical techniques for analysis of data. And it also helps to know about presenting the data in various forms will be able to write reports on various academic activities including research effectively and efficiently.

Students need to complete the two courses (one from each head)

Recommended online courses for students are as following

# A. For Professional Development (Any one of the following)

- 1. LaTeX & XFig typesetting software by Prof. Kannan Moudgalya | IIT Bombay
- 2. Academic Research and Report Writing by Dr. Samir Roy | NITTTR, Kolkata
- 3. Basic Research by Dr. Premavathy Vijayan | AIHSHEW, Coimbatore
- 4. Spoken tutorial Courses on XFif Typesetting Software
- 5. Spoken tutorial Courses on LaTeX Typesetting Software

# **B.** For Technical Development (Any one of the following)

- 1. Spoken tutorial Courses on SCILAB
- 2. Spoken tutorial Courses on Python
- 3. Spoken tutorial Courses on DSPACE
- 4. Spoken tutorial Courses on eSim
- 5. Spoken tutorial Courses on HTML
- 6. MATLAB ONRAMP / ECAD / LabVIEW / Industry 4.0 / IoT

And other Professional / Technical Development Courses.

NOTE: The students should take approval before registering the course from the department.

- ✓ Students are suggested to follow the deadlines of the courses, and submit all the assignments due.
- ✓ Continuous Assessment is based on your Assignment Scores, Final Presentation and Report Submission.
- ✓ Students are motivated to appear for exam and earn Course Completion Certificate.

# MC221: INNOVATION - Project based – Science and Technology, Social, Design & Innovation

| Teaching Scheme        | Examination Scheme |
|------------------------|--------------------|
| Lectures: 02 Hrs./Week | Oral: NA           |
| Tutorial: Hrs./Week    | Practical: NA      |
| Practical: Hrs./Week   | Term Work: NA      |
| Credits: No Credits    | Total: NA          |
| Prerequisite Course:   |                    |

## **Course Objectives**

- 1. To develop strategic thinking to solve social problems
- 2. Understand the role of innovation and technical change in enterprise and national level economic performance
- 3. Understand the technological, human, economic, organizational, social, and other dimensions of innovation
- 4. Understand the effective management of technological innovation requires the integration of people, processes, and technology
- 5. Recognize opportunities for the commercialization of innovation

# **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     |                                                                                                                 | Bloom's Taxonomy |               |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|
|     | Course Outcome (s)                                                                                              | Level            | Descriptor    |  |  |
| CO1 | Understand the role of innovation and technical change in<br>enterprise and national level economic performance | 2                | Understanding |  |  |
| CO2 | Develop strategic thinking to solve social problems                                                             | 3                | Applying      |  |  |
| CO3 | Recognize opportunities for the commercialization of innovation                                                 | 6                | Create        |  |  |

| Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                      | 2   | 2   |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2                                                                                      |     |     | 3   | 2   |     |     |     |     |     |      |      |      |      |      |
| CO3                                                                                      |     |     |     |     | 2   | 2   | 3   | 3   | 3   | 2    | 2    | 2    |      |      |

# **Course Contents**

Many students, when they enter engineering, are full of enthusiasm to understand new areas, to build systems and to experiment and play with them. This enthusiasm is to be tapped and to direct it to exploration and sustained pursuit by the student, which may result in development of a working system, a prototype, or a device or material, etc. They are expected to come up with novel and useful ideas on social problems. Students may be encouraged to take up projects which are aimed at providing solutions to societal problems, reduce drudgery and improving efficiency in rural work, green technologies, utilization of rural and urban waste, sanitation, and public health, utilizing nonconventional energy sources, technologies for the benefit of the differently abled people and technologies ready to be implemented in the Institute.

Two types of activities may be undertaken under this

(a) Exposure to social problems (which are amenable to technological solutions)

(b) Design & Innovation (to address above problems)

After this student, be encouraged to undertake technology projects of social relevance



SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

# DEPARTMENT OF ELECTRICAL ENGINEERING



DEPARTMENT OF ELECTRICAL ENGINEERING COURSE STRUCTURE - 2020 PATTERN THIRD YEAR B. TECH Academic Year 2022-23
# SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)



# **DEPARTMENT OF ELECTRICAL ENGINEERING**

**Profile:** The Electrical Engineering degree program offer the graduates to enter a dynamic and rapidly changing field with career opportunities in Electric Power System, Power Electronics, Robotics and Control, Microprocessors and Controllers, Integrated Circuits, Computer Software. The demand for electrical power and electronic systems is increasing rapidly and electrical engineers are in great demand to meet the requirements of the growing industry. Electrical Engineers are mainly employed in industries using Electrical Power, Manufacturing Electrical Equipment, Accessories, Electronic Systems, Research and Development departments which work on energy saving devices and Software Development.

Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, electromagnetic and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, Artificial Intelligence, mechatronics, and electrical materials science. Identifying these areas today's Electrical Engineer needs to have the capacity of adaptability and creativity in these new technical eras, to meet the industry 4.0.

Electrical Engineering Department of Sanjivani College of Engineering offers the B. Tech. course in Electrical Engineering with an intake of 60 students. The department has well qualified and dedicated faculty and is known for its high academic standards, well-maintained discipline, and complete infrastructure facilities.

# Vision of Department

To produce quality electrical engineers with the knowledge of latest trends, research technologies to meet the developing needs of industry & society



- M1: To impart quality education through teaching learning process
- M2: To establish well-equipped laboratories to develop R&D culture in contemporary and sustainable technologies in Electrical Engineering
- M3: To produce Electrical Engineering graduates with quest for excellence, enthusiasm for continuous learning, ethical behavior, integrity and nurture leadership

**Program Outcomes (POs):** 

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, society, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

- 6. **The engineer and society:** Apply reasoning in formed by the contextual knowledge to assess social, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply the set of one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# **Program Educational Objectives (PEOs)**

The PEOs of undergraduate programme in Electrical Engineering are broadly classified as follows:

**PEO 1:** Equip the student to analyze and solve real world problems to face the challenges of future.

**PEO 2:** Pursue higher education, research in Electrical Engineering or other allied fields of their interest for professional development.

PEO 3: Exhibit the leadership skills and ethical value for society



**PSO 1:** Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronics circuits, control systems, electrical machines and Power system.

**PSO 2:** Apply the appropriate modern engineering hardware, and software tools in electrical engineering to engage in life-long learning and to successfully adapt in multi-disciplinary environments.

# **COURSE STRUCTURE- 2020 PATTERN** THIRD YEAR B. TECH. ELECTRICAL ENGINEERING

# **SEMESTER- V**

|      |       | Course                                                                              | Т  |   | ing S<br>urs/v | Scheme<br>week |     |                   | aluatio | on Sch | eme-M | larks |       |
|------|-------|-------------------------------------------------------------------------------------|----|---|----------------|----------------|-----|-------------------|---------|--------|-------|-------|-------|
| Cat. | Code  | Title                                                                               | L  | Т | Р              | Credits        | ISE | Theory<br>ES<br>E | CI<br>A | OR     | PR    | TW    | Total |
| РСС  | EE301 | Microcontrollers And<br>Applications                                                | 3  | - | -              | 3              | 30  | 50                | 20      | -      | -     | -     | 100   |
| РСС  | EE302 | Electrical Machines II                                                              | 3  | - | -              | 3              | 30  | 50                | 20      | -      | -     | -     | 100   |
| РСС  | EE303 | Power System II                                                                     | 3  | - | -              | 3              | 30  | 50                | 20      | -      | -     | -     | 100   |
| РСС  | EE304 | Power Electronics                                                                   | 3  | - | -              | 3              | 30  | 50                | 20      | -      | -     | -     | 100   |
| PEC  | EE305 | Professional Elective-I<br>A. Renewable Energy<br>Sources<br>B. Smart Grid          | 3  | - | -              | 3              | 30  | 50                | 20      | -      | -     | -     | 100   |
| LC   | EE306 | Microcontrollers And<br>Applications Laboratory                                     | -  | - | 2              | 1              | -   | -                 | -       | 25     | -     | -     | 25    |
| LC   | EE307 | Electrical Machines II<br>Laboratory                                                | -  | - | 2              | 1              | -   | -                 | -       | -      | 50    | -     | 50    |
| LC   | EE308 | Power System II Laboratory                                                          | -  | - | 2              | 1              | -   | -                 | -       | 25     | -     | -     | 25    |
| LC   | EE309 | Power Electronics<br>Laboratory                                                     | -  | - | 2              | 1              | -   | -                 | -       | -      | 50    | -     | 50    |
| PRJ  | EE310 | Skill Based Credit Course                                                           | 1  | - | -              | 1              | -   | -                 | -       | -      | -     | 50    | 50    |
| MLC  | MC311 | Mandatory Learning<br>Course-V<br>A. Electrical Energy<br>Conservation and Auditing | 1  | - | -              | No<br>Credit   | -   | -                 | -       | -      | -     | -     | -     |
|      |       | Total                                                                               | 17 | - | 8              | 20             | 150 | 250               | 100     | 50     | 100   | 50    | 700   |

Total Credits: 20 Total Marks: 700

# **COURSE STRUCTURE- 2020 PATTERN** THIRD YEAR B. TECH. ELECTRICAL ENGINEERING

## **SEMESTER- VI**

|      |       | Course                                                                                                                                                                                 | ]  |   | ning S<br>ours/v | Scheme<br>week |     | ]      | Evaluat | ion Sc | heme- | Marks |           |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------------------|----------------|-----|--------|---------|--------|-------|-------|-----------|
| Cat. | Code  | Title                                                                                                                                                                                  | L  | Т | Р                | Credit         |     | Theory |         | OR     | PR    | TW    | Total     |
| Cat. | Cout  |                                                                                                                                                                                        | 12 | 1 | 1                | S              | ISE | ESE    | CIA     | UK     | IK    | 1     | 10(a)     |
| РСС  | EE312 | Power System<br>Operation and Control                                                                                                                                                  | 4  | - | -                | 4              | 30  | 50     | 20      | -      | -     | -     | 100       |
| РСС  | EE313 | Feedback Control<br>Systems                                                                                                                                                            | 3  | - | -                | 3              | 30  | 50     | 20      | -      | -     | -     | 100       |
| РСС  | EE314 | Electrical Machine<br>Design                                                                                                                                                           | 3  | - | -                | 3              | 30  | 50     | 20      | -      | -     | -     | 100       |
| PEC  | EE315 | <ul> <li>Professional Elective-</li> <li>II</li> <li>A. Electrical Drives</li> <li>B. Utilization of</li> <li>Electrical Energy</li> <li>C. Electromagnetic</li> <li>Fields</li> </ul> | 3  | - | -                | 3              | 30  | 50     | 20      | -      | -     | -     | 100       |
| HSMC | HS315 | Corporate Readiness                                                                                                                                                                    | 2  | - | -                | 2              | -   | -      | 50      | -      | -     | -     | 50        |
| PROJ | PR316 | IPR & EDP                                                                                                                                                                              | 2  | - | -                | 2              | -   | 30     | 20      | -      | -     | -     | 50        |
| LC   | EE317 | Power System<br>Operation and Control<br>Laboratory                                                                                                                                    | -  | - | 2                | 1              | -   | -      | -       | 25     | -     | -     | 25        |
| LC   | EE318 | Feedback Control<br>Systems Laboratory                                                                                                                                                 | -  | - | 2                | 1              | -   | -      | -       | -      | 50    | -     | 50        |
| LC   | EE319 | Electrical Machine<br>Design Laboratory                                                                                                                                                | -  | - | 2                | 1              | -   | -      | -       | 25     | -     | -     | 25        |
| LC   | EE320 | Programming<br>Laboratory                                                                                                                                                              | -  | - | 2                | 1              | -   | -      | -       | -      | 50    | -     | 50        |
| PROJ | EE321 | Creational Activity                                                                                                                                                                    | -  | - | 2                | 1              | -   | -      | -       | -      | -     | 50    | 50        |
| MLC  | MC322 | Mandatory Learning<br>Course-VI<br>A. PCB Design                                                                                                                                       | 1  | - | -                | Non<br>Credit  | -   | -      | -       | -      | -     | -     | Pass/Fail |
|      |       | Total                                                                                                                                                                                  | 18 | - | 10               | 22             | 120 | 230    | 150     | 50     | 100   | 50    | 700       |





# **EE301: MICROCONTROLLERS AND APPLICATIONS**

| Teaching Scheme |              | Examination Scheme     |           |
|-----------------|--------------|------------------------|-----------|
| Lectures: 0     | )3 Hrs./Week | Continuous Assessment: | 20 Marks  |
| Tutorial: -     | Hr/Week      | In-Sem Exam:           | 30 Marks  |
|                 |              | End-Sem Exam:          | 50 Marks  |
| Credits:        | 03           | Total:                 | 100 Marks |

## Prerequisite Course:

Analog and Digital Electronics

### **Course Objectives**

1. To understand the differences between microcontrollers and microprocessors learn microcontroller architecture & describe the features of a typical microcontroller.

To use the 8051 addressing modes and instruction set and apply this knowledge to perform programs
 arithmetic & logic operations, data & control transfer operations, input & output operations.

3. To define the protocol for serial communication and understand the microcontroller development systems.

To build and test a microcontroller-based system; interface the system to switch, keypad, and display.
 To understand Arduino Board and its applications.

6. To understand embedded systems terminologies in terms of electrical Engineering.

### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                              | Bloom's 7 | axonomy       |
|-----|-------------------------------------------------------------------------------------------------|-----------|---------------|
|     |                                                                                                 | Level     | Descriptor    |
| CO1 | Describe basics of 8051 and its instruction set                                                 | 2         | Understanding |
| CO2 | Construct assembly language programs based on the instruction set of 8051.                      | 6         | Creating      |
| CO3 | Understand the Timers, Interrupts, serial communication and interfacing with microcontroller.   | 2         | Understanding |
| CO4 | Understand Arduino Board and Interfacing                                                        | 2         | Understanding |
| CO5 | Build programs and interface different component with<br>Arduino board for various applications | 3         | Applying      |
| CO6 | Interface I/O for real life applications using Advance controllers                              | 3         | Applying      |

|     | Mapp | ing of C | ourse O | utcomes | s to Prog | gram Ou | tcomes | (POs) & | 2 Progra | m Speci | fic Outc | omes (F | PSOs): |      |
|-----|------|----------|---------|---------|-----------|---------|--------|---------|----------|---------|----------|---------|--------|------|
|     | PO1  | PO2      | PO3     | PO4     | PO5       | PO6     | PO7    | PO8     | PO9      | PO 10   | PO 11    | PO 12   | PSO1   | PSO2 |
|     |      |          |         |         |           |         |        |         |          |         |          |         |        |      |
| CO1 | 3    | 2        | 2       | 1       | 2         | 1       | -      | 1       | 1        | 1       | 1        | 1       | 1      | 1    |
| CO2 | 3    | 2        | 2       | 2       | 2         | 1       | -      | 1       | 1        | 1       | 1        | 1       | 1      | 2    |
| CO3 | 3    | 2        | 2       | 3       | 2         | 3       | 2      | 1       | 2        | 2       | 2        | 2       | 1      | 2    |
| CO4 | 3    | 2        | 2       | 1       | 2         | 1       | 1      | 1       | 1        | 1       | 1        | 1       | 1      | 1    |
| CO5 | 3    | 2        | 2       | 2       | 2         | 2       | 2      | 2       | 2        | 2       | 2        | 1       | 1      | 2    |
| CO6 | 3    | 2        | 2       | 3       | 2         | 3       | 2      | 2       | 2        | 3       | 3        | 2       | 1      | 2    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| UNIT-I   | INTRODUCTION TO MICROCONTROLLER                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.             | СО          |
|          | Introduction to concept of microcontroller, comparison of Microprocessor and microcontroller, Comparison of all 8-bit microcontrollers, Criteria for selecting a microcontroller, Intel 8051 microcontroller architecture, Pin diagram, Memory organization of 8051, special function registers, Internal structure of I/O ports, operation of I/O ports.                                                                               | 7                | CO1,<br>CO2 |
| UNIT-II  | PROGRAMMING OF 8051 - I                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.             | CO          |
|          | Addressing modes of 8051, Instruction set of 8051, Stack and Stack<br>Related instruction, Data exchange, byte level logical operations, bit<br>level logical operations, rotate and swap operations, instruction<br>affecting flags, incrementing, decrementing, arithmetic operations,<br>jump and recall instruction, Call and return subroutines. Introduction<br>to embedded C programming.                                        | 6                | CO2         |
| UNIT-III | PROGRAMMING OF 8051- II AND INTERFACING                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.             | CO          |
|          | Counters and timers in 8051, timer modes and its programming.<br>Interrupt registers, Serial communication and its programming.<br>Serial data input, output, Serial data modes, interfacing of 8051 with<br>PC through RS232. Programming and Interfacing of 8051 with 8 bit<br>ADC (0809) and DAC (0808).<br>Interfacing of 8051 with single key, LED, Relay, speed control of dc<br>motors, Stepper motor control (speed /position). | 6                | CO3         |
| UNIT-IV  | INTRODUCTION TO ARDUINO BOARD                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.             | СО          |
|          | Role of embedded systems, open-source embedded platforms,<br>Atmega328P- features, architecture, sensors and actuators, data<br>acquisition systems, introduction to Arduino IDE- features, IDE<br>overview, programming concepts: variables, functions, conditional<br>statements.                                                                                                                                                     | 6                | CO4         |
| UNIT-V   | INTERFACING OF ARDUINO                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.             | СО          |
|          | Concept of GPIO in Atmega 328P based Arduino board, digital input<br>and output, UART concept, timers, interfacing with LED, LCD<br>andkeypad, serial communication using Arduino IDE, Concept of<br>ADC in Atmega 328P based Arduino board, interfacing with<br>temperature sensor (LM35), LVDT, strain gauge, accelerometer,<br>concept of PWM, DCmotor interface using PWM.                                                          | 8                | CO5         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                |             |
| UNIT-VI  | ADVANCE MICROCONTROLLERS                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.             | CO          |
| UNIT-VI  | ADVANCE MICROCONTROLLERS<br>Introduction, survey of different microcontrollers,<br>Specifications, features, applications of different<br>microcontrollers like PIC, NodeMCU, ARM processor,<br>Raspberry pi development board, Concept of SOC.                                                                                                                                                                                         | <b>Hrs.</b><br>8 | <b>CO</b>   |

**Text Books:** 

[T1] Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The Microcontroller and Embedded Systems", Second Edition, Pearson, 2012.

[T2] Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications "Second Edition, Penram international.

[T3] Subrata Ghoshal, "8051 microcontroller", Pearsons Publishers.

[T4] Started with Arduino by Massimo Banzi and Michael Shiloh Published by Maker Media, Inc.

[T5] Arduino microcontroller processing for everyone-Steven F Barret, Morgan and

Claypool Publisher

## **References:**

[R1] V Udayashankara and M S MallikarjunaSwamy, "8051 Microcontroller, Hardware, software and applications", TATA McGraw Hill.

[R2] Scott Mackenzie, "8051 Microcontroller", Pearson Education.

[R3] Ajay Deshmukh, "Microcontroller 8051" – TATA McGraw Hill.

[R4] Getting Started With Arduino: A Beginner's Guide by Brad Kendall (Author), Justin Pot (Editor), Angela Alcorn (Editor)

[R5] Arduino Cookbook, 2nd Edition by Michael Margolis published by O'Reilly Media.

Department of Electrical Engineering T. Y. B. Tech Electrical Engineering 2020 Pattern

|                                                        | EE302: ELECTRICAL MACHINE                                                                                                                                                                                                                                                                                                                                                                                                                                               | S II                                                        |                                                  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| Teachir                                                | ng Scheme Examination Sch                                                                                                                                                                                                                                                                                                                                                                                                                                               | ieme                                                        |                                                  |
| Lecture                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essment:                                                    | 20 Marks                                         |
| Tutoria                                                | l: Hr./Week In-Sem Exam:                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | <b>30 Marks</b>                                  |
|                                                        | End-Sem Exam:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 50 Marks                                         |
| Credits                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             | 100 Marks                                        |
|                                                        | uisite Course:Basic Electrical Engineering2. Electrical Machines I                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                  |
| Course                                                 | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                  |
| condition<br>4. Learn<br>5. Deve<br>6. Devel<br>Course | n Speed control methods of three phase induction motor.<br>elop phasor diagram & circle diagram of a c series motor.<br>lop equivalent circuit of single-phase induction motor.<br>Outcomes (COs):                                                                                                                                                                                                                                                                      | operation                                                   | under Different                                  |
| A THE CI                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |                                                  |
| And St                                                 | accessful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                  |
| And St                                                 | Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | n's Taxonomy                                     |
|                                                        | Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bloon<br>Level                                              | 1's Taxonomy<br>Descriptor                       |
| CO1                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | l l l l l l l l l l l l l l l l l l l            |
|                                                        | Course Outcome (s)           Illustrate the operation of induction motor as generalized           transformer, its equivalent circuit to select machine for specific                                                                                                                                                                                                                                                                                                    | Level                                                       | Descriptor                                       |
| C01                                                    | Course Outcome (s)         Illustrate the operation of induction motor as generalized transformer, its equivalent circuit to select machine for specific applications.         Analyse Speed control methods of three phase induction motor,                                                                                                                                                                                                                            | Level<br>3                                                  | <b>Descriptor</b><br>Applying                    |
| CO1<br>CO2                                             | Course Outcome (s)         Illustrate the operation of induction motor as generalized transformer, its equivalent circuit to select machine for specific applications.         Analyse Speed control methods of three phase induction motor, and the operation of different special purpose motor.         Analyse circle diagram of AC series motor & Examine                                                                                                          | Level         3           4         4                       | Descriptor<br>Applying<br>Analyzing              |
| CO1<br>CO2<br>CO3                                      | Course Outcome (s)         Illustrate the operation of induction motor as generalized transformer, its equivalent circuit to select machine for specific applications.         Analyse Speed control methods of three phase induction motor, and the operation of different special purpose motor.         Analyse circle diagram of AC series motor & Examine applications of Universal motor.         Understand the construction, operation of cylindrical & sailent | Level         3           4         4           4         4 | Descriptor<br>Applying<br>Analyzing<br>Analyzing |

| Mappin | g of Co | urse O | utcome | s to Prog | ram Ou | itcomes | (POs) | & Prog | ram Sp | ecific Ou | itcomes ( | (PSOs): |      |      |
|--------|---------|--------|--------|-----------|--------|---------|-------|--------|--------|-----------|-----------|---------|------|------|
|        | PO1     | PO2    | PO3    | PO4       | PO5    | PO6     | PO7   | PO8    | PO9    | PO10      | PO11      | PO12    | PSO1 | PSO2 |
| CO1    | 3       | 2      | 2      | 1         | 1      | 2       | 1     | 1      | 1      | 1         | 2         | 3       | 3    | 2    |
| CO2    | 3       | 2      | 1      | 2         | 1      | 2       | 1     | 1      | 1      | 1         | 2         | 2       | 3    | 2    |
| CO3    | 3       | 2      | 2      | 1         | 2      | 1       | 1     | 1      | 1      | 1         | 1         | 1       | 3    | 1    |
| CO4    | 2       | 1      | 2      | 2         | 1      | 1       | 1     | 1      | -      | 1         | 1         | 2       | 3    | 2    |
| CO5    | 3       | 2      | 1      | 3         | 1      | 2       | 1     | 1      | 1      | 1         | 2         | 1       | 3    | 1    |
| CO6    | 3       | 2      | 1      | 1         | 1      | 2       | 1     | 1      | 1      | 1         | 2         | 2       | 3    | 2    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | THREE PHASE INDUCTION MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO  |
|          | Induction motor as a generalized transformer; phasor diagram. Exact<br>& approximate equivalent circuit. No load and blocked rotor tests to<br>determine the equivalent circuit parameters and plotting the circle<br>diagram. Computation of performance characteristics from the<br>equivalent circuit and circle diagram. Performance curves. Necessity<br>of starter for 3-phase induction motors. Starters for slip-ring and<br>cage rotor induction motors; stator resistance starter, auto<br>transformer starter, star delta starter and rotor resistance starter.<br>D.O.L. starter and soft starting, with their relevant torque and current<br>relations. Comparison of various starters, testing of three phase<br>induction motor as per IS 12615.                                                                                                                                                                                                               | 8    | CO1 |
| UNIT-II  | INDUCTION MACHINES AND SPECIAL PURPOSE<br>MOTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | СО  |
|          | <ul> <li>a) Speed control of three phase induction motor by various methods (Stator side and rotor side controls). Action of 3-phase induction motor as induction generator, applications of induction generator. Introduction to Energy Efficient three phase Induction Motor and Super conducting Generator.</li> <li>b) Construction of single phase induction motor, double field revolving theory. Equivalent circuit and torque-slip characteristics on the basis of double revolving field theory. Methods of self-starting. Types of single phase induction motors. Comparison of 1-phase induction motor with 3-phase induction motor.</li> <li>c) Special Purpose Motors (Descriptive Treatment Only): Construction, principle of working, characteristics ratings and applications of Brushless D.C. motors, Stepper rotors (permanent magnet and variable reluctance type only), Permanent Magnet motor (A.C. &amp; D.C.) and linear induction motors.</li> </ul> | 8    | CO2 |
| UNIT-III | A.C. SERIES MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO  |
|          | <ul> <li>a) Operation of D.C. series motor on a.c. supply, nature of torque developed, problems associated with AC. operation and remedies.</li> <li>b) Compensated series motor: Compensating winding, conductively and inductively compensated motor. Use of compoles for improving commutation. Ratings and applications of Compensated Series motors.</li> <li>c) Universal motors: ratings, performance and applications, comparison of their performance on A.C. and D.C. supply.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8    | CO3 |
| UNIT-IV  | THREE PHASE SYNCHRONOUS MACHINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | CO  |
|          | <ul> <li>a) Three phase Synchronous machines: Construction, rotating-field type and rotating-armature type, salient-pole type and non-salient-pole type and their comparison. Excitation Methods.</li> <li>b) Three phase Synchronous generator (cylindrical rotor type): Principle of operation. Emf equation and winding factors, rating of generator. Generator on no-load and on balanced load.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8    | CO4 |

|                                                                                                                                                                                                                                              | <ul> <li>Armature reaction and its effect under different load power factors. Voltage drop due to armature resistance, leakage flux and synchronous reactance. Per phase equivalent circuit and Phasor diagram. Power - power angle relation.</li> <li>Three phase Synchronous generator (salient pole type):<br/>Armature reaction as per Blondel's two reaction theory for salient-pole machines, Direct-axis and quadrature-axis synchronous reactance's and their determination by slip test. Phasor diagram of Salient-pole generator and calculation of voltage regulation.</li> </ul>                                                                    |                           |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| UNIT-V                                                                                                                                                                                                                                       | THREE PHASE SYNCHRONOUS MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.                      | CO   |
|                                                                                                                                                                                                                                              | Principle of operation. Methods of starting. Equivalent circuit, significance of torque angle, Losses, efficiency and Power flow chart. Operation of 3-phase Synchronous motor with constant excitation and variable load, Operation with constant load and variable excitation ('V' Curves and 'inverted V' curves). Phenomenon of hunting and its remedies. Applications of 3-phase synchronous motors. Introduction to synchronous – induction motor. Comparison of 3 phase synchronous motor with 3-phase induction motor.                                                                                                                                  | 8                         | CO5  |
| UNIT-VI                                                                                                                                                                                                                                      | VOLTAGE REGULATION OF THREE PHASE<br>SYNCHRONOUS GENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.                      | CO   |
| Text Books                                                                                                                                                                                                                                   | <ul> <li>a) Performance of open circuit and short circuit test on synchronous generator, determination of voltage regulation by emf, mmf, and Potier triangle methods. Determination of voltage regulation by direct loading. Short circuit ratio.</li> <li>b) Parallel operation of 3-phase alternators: Necessity, conditions, Load sharing between two alternators in parallel (Descriptive treatment only). Process of synchronizing alternator with infinite bus-bar by lamp method (one dark &amp; two equally bright lamp method) and by the use of synchroscope, Synchronizing current, power and torque (no numerical).</li> </ul>                     | 8                         | CO6  |
| [T1] Nagrat<br>[T2] S. K. E<br>[T3] A.S. L<br>[T4] P. S. B<br>[T5] B.R. G<br>[T6] E. Ope<br>[T7] V. K. M<br>[T8] Krishn<br>[T9] Ashfac<br>[T10] M V<br><b>References</b><br>[R1] M.G. S<br>[R2] J B Gu<br>[R3] Samar<br>[R4] Bhag S<br>Oxfor | ch and Kothari, Electrical Machines, 2nd Ed., Tata McGraw Hill.<br>Bhattacharya, Electrical Machines, Tata McGraw Hill.<br>angsdorf, Theory of Alternating Current Machinery, Tata McGraw Hill<br>imbhra, Electric Machinery, Khanna Publications.<br>Bupta and Vandana Singhal -Fundamentals of Electric Machines, New Ag<br>enshaw Taylor, Performance and design of a.c. commutator motors, Whe<br>Mehta and Rohit Mehta, Principles of Electrical Machines, S Chand Pub<br>a Reddy –Electrical Machines vol.II and III, SCITECH publications.<br>Husain, Electrical Machines, Dhanpat Rai and Co.<br>Deshpande, Electrical Machines, Prentice Hall of India | eler Publish<br>lications | ing. |

|                                                                             |                                      |                                                                    |                                             | I                                         | E <b>E30</b> :                | 3: PC                        | WEI                              | R SY              | STEI             | MII      |         |          |          |                    |
|-----------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------|------------------------------|----------------------------------|-------------------|------------------|----------|---------|----------|----------|--------------------|
|                                                                             |                                      | cheme                                                              |                                             |                                           |                               | <u> </u>                     | /TT 7 . 1                        |                   |                  | n Sche   |         |          |          |                    |
| Lectu<br>Tutor                                                              |                                      |                                                                    |                                             |                                           |                               |                              | /Week<br>/Week                   | -                 | inuous<br>em Exa | Assess   | sment   |          |          | ) Marks<br>) Marks |
| Tutor                                                                       | 181:                                 |                                                                    |                                             |                                           |                               | <b>П</b> Г                   | / week                           |                   | Sem E            |          |         |          |          | ) Marks            |
| Credi                                                                       | ts:                                  |                                                                    |                                             |                                           |                               | 03                           |                                  | Total             |                  | Aum.     |         |          |          | ) Marks            |
| 1. Pov<br>2. Ele<br>3. Net                                                  | ver Sy<br>ctrical<br>work            | te Cour<br>stem I<br>Machin<br>Analysi<br>jectives                 | ne<br>s                                     |                                           |                               |                              |                                  |                   |                  |          |         |          |          |                    |
| <ol> <li>2. It is</li> <li>3. To</li> <li>4. Thi</li> <li>5. Thi</li> </ol> | s aime<br>unders<br>s cour<br>s cour | se provi<br>d to imp<br>stand us<br>se provi<br>se provi<br>tcomes | oart kno<br>e of pe<br>ides the<br>ides the | owledge<br>r unit s<br>e knowl<br>e knowl | e of Re<br>ystem a<br>ledge o | al Time<br>and fau<br>f Powe | e systen<br>lt analy<br>r flow s | n<br>sis<br>study |                  | ility.   |         |          |          |                    |
| After                                                                       | succes                               | sful coi                                                           | npletio                                     | on of th                                  | e cours                       | e, stude                     | ent will                         | be able           | e to             |          |         |          |          |                    |
| Cours                                                                       | se Out                               | tcome (                                                            | s)                                          |                                           |                               |                              |                                  |                   |                  |          |         |          | 's Taxor |                    |
|                                                                             |                                      | D                                                                  |                                             |                                           |                               |                              | • 1                              | 1.                | •                | 1 11     |         | Level    |          | riptor             |
| CC                                                                          |                                      | parame                                                             | eters.                                      |                                           | -                             |                              | a circle                         | -                 |                  | h line   |         | 3        |          | olying             |
| CC                                                                          | )2                                   |                                                                    | 1                                           |                                           |                               |                              | variou                           | 1                 |                  |          |         | 6        |          | eating             |
| CC                                                                          | )3                                   |                                                                    | ymmetr                                      | rical an                                  | d asym                        | metrica                      | a faulte<br>al faults            | -                 | •                |          | er      | 3        | Арр      | olying             |
| CC                                                                          | )4                                   |                                                                    | te diffe                                    |                                           |                               | <u> </u>                     | or balar                         | nced an           | d unba           | lanced   |         | 5        | Eval     | uating             |
| CC                                                                          | )5                                   | Analyz                                                             | ze vario<br>l issues                        | under                                     | conges                        | •                            | y marke<br>anagem                | -                 |                  |          |         | 4        | Ana      | lyzing             |
| CC                                                                          | )6                                   | Planni                                                             | ng for t                                    | the dist                                  | ributior                      | •                            | n and to<br>bution \$            |                   |                  | he need  | 1       | 2        | Under    | standing           |
| Mappi                                                                       | ng of C                              | ourse O                                                            |                                             |                                           |                               |                              |                                  | -                 |                  | cific Ou | itcomes | s (PSOs) | :        |                    |
|                                                                             | PO1                                  | PO2                                                                | PO3                                         | PO4                                       | PO5                           | PO6                          | PO7                              | PO8               | PO9              | PO10     | PO11    | PO12     | PSO1     | PSO2               |
| CO1                                                                         | 3                                    | 2                                                                  | 1                                           | 1                                         | 1                             | 1                            | 1                                | 1                 | 1                | 1        | 1       | 1        | 2        | 2                  |
| CO2                                                                         | 2                                    | 2                                                                  | 1                                           | 1                                         | 1                             | 1                            | 1                                | 1                 | 1                | 1        | 1       | 2        | 2        | 2                  |
| CO3                                                                         | 3                                    | 2                                                                  | 1                                           | 1                                         | 1                             | 1                            | 1                                | 1                 | 1                | 1        | 1       | 1        | 2        | 2                  |
| CO4                                                                         | 3                                    | 2                                                                  | 2                                           | 2                                         | 2                             | 2                            | 1                                | 1                 | 2                | 2        | 2       | 2        | 2        | 2                  |
| CO5                                                                         | 3                                    | 2                                                                  | 2                                           | 2                                         | 2                             | 2                            | 1                                | 1                 | 2                | 2        | 1       | 2        | 2        | 2                  |
| CO6                                                                         | 2                                    | 2                                                                  | 1                                           | 1                                         | 1                             | 1                            | 1                                | 1                 | 1                | 1        | 1       | 1        | 2        | 2                  |
|                                                                             |                                      |                                                                    |                                             |                                           |                               |                              |                                  |                   |                  |          |         |          |          |                    |

|         | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| UNIT-I  | TRANSMISSION LINE PERFORMANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO         |
|         | Evaluation of ABCD constants and equivalent circuit parameters of Long transmission line. Concept of complex power, power flow using generalized constants, surge impedance loading, Line efficiency, Regulation and compensation, basic concepts. Numerical based on: ABCD constants of Long transmission line, Power flow.                                                                                                                                                                                                                                                                                                                                    | 06   | CO1        |
| UNIT-II | PER UNIT SYSTEM AND LOAD FLOW ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs. | СО         |
|         | <ul> <li>Per unit system: Single line diagram, Impedance and reactance diagrams and their uses, per unit quantities, relationships, selection of base, change of base, rsystem. Numerical based on network reduction by using per unit system.</li> <li>Load Flow Analysis: Network topology, driving point and transfer admittance, concept of Z-bus and formulation of Y-bus matrix using bus incidence matrix method, Numerical based on Y bus Matrix, power- flow equations generalization to n bus systems, classification of buses, Newton- Raphson method (polar method) Decoupled and Fast decoupled load flow (descriptive treatment only).</li> </ul> | 06   | CO2        |
| NIT-III | SYMMETRICAL FAULT ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs. | CO         |
|         | 3-phase short-circuit analysis of unloaded alternator, sub-transient, transient and steady state current and impedances, D.C. Offset, and effect of the instant of short-circuit on the waveforms, estimation of fault current without pre-fault current for simple power systems, selection of circuit breakers and current limiting reactors and their location in power system (Descriptive treatment Only) Numerical problem based on symmetrical fault analysis.                                                                                                                                                                                           | 08   | CO3        |
| UNIT-IV | UNSYMMETRICAL FAULT ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | CO         |
|         | Symmetrical components, transformation matrices, sequence components, power in terms of symmetrical components, sequence impedance of transmission line and zero sequence networks of transformer, solution of unbalances by symmetrical components-L, L-G, and L- L-G fault analysis of unloaded alternator and simple power systems with and without fault impedance. Numerical based on symmetrical components and unsymmetrical fault calculation.                                                                                                                                                                                                          | 08   | CO4        |
| UNIT-V  | POWER GENERATION POOL, ITS ECONOMICS AND POWER SYSTEM<br>STABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | СО         |
|         | Basics of Power System Economics & Short-term Operation Planning of Power<br>System, Load curves and load duration curves, Power Pools & Electricity Markets.<br>Inter-area transactions, multi-area power interchanges, Energy brokerage systems,<br>Market design and auction mechanism, Pool versus bilateral markets and price<br>formation, Role of independent generators and system operator.<br>Steady state stability, transient stability, equal area criterion, swing equation, multi-<br>machine stability concept.                                                                                                                                 | 06   | CO5<br>CO4 |
| UNIT-VI | DITRIBUTED GENERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs. | CO         |
|         | Distributed Generation Standards, DG potential, Definitions and terminologies;<br>current status and future trends, Technical and economic impacts, Definitions and<br>terminologies; current status and future trends, Technical and economic impacts DG<br>Technologies, DG from renewable energy sources, DG from non-renewable energy<br>sources, distributed generation applications, Operating Modes, Base load; peaking;<br>peak shaving and emergency power, Isolated, momentary parallel and grid                                                                                                                                                      | 06   | CO6        |

- [T1]. J. Nagrath and D.P. Kothari Modern Power System Analysis Tata McGraw Hill, New Delhi.
- [T2]. B R Gupta, "Power System Analysis and Design", S. Chand.
- [T3]. Ashfaq Hussain, "Electrical Power Systems", CBS Publication 5th Edition.
- [T4]. J.B.Gupta. "A course in power systems" S. K. Kataria Publications.
- [T5]. P.S.R. Murthy, "Power System Analysis", B. S. Publications
- [T6]. Anthony J. Pansini "Electrical Distribution Engineering", CRC Press.
- [T7]. A. J. Wood and B. F. Wallenberg, "Power generation, operation and control", Wiley Interscience, 2nd Edition, 1996

[T8]. H Lee Willis, "Distributed Power Generation Planning and Evaluation", CRC Press.

### **References:**

[R1]. H. Hadi Sadat: Power System Analysis, Tata McGraw-Hill New Delhi.

[R2]. G. W. Stagg and El- Abiad – Computer Methods in Power System Analysis – Tata McGraw Hill, New Delhi.

- [R3]. M. E. El-Hawary, Electric Power Systems: Design and Analysis, IEEE Press, New York.
- [R4]. Rakash Das Begamudre, "Extra High voltage A.C. Transmission Engineering", New age

## publication.

[R5]. M. A. Pai, Computer Techniques in Power System Analysis, Tata McGraw Hill Publication.

- [R6]. Stevenson W.D. Elements of Power System Analysis (4th Ed.) Tata McGraw Hill, New Delhi.
- [R7]. K. R. Padiyar: HVDC Transmission Systems, New Age International Publishers Ltd, New Delhi.
- [R8]. Olle I. Elgard Electric Energy Systems Theory Tata McGraw Hill, New Delhi.
- [R9]. V. K. Chandra, Power Systems, Cyber tech Publications.

# **EE304: POWER ELECTRONICS**

| Teaching Scheme |              | Examination Scheme     |                 |
|-----------------|--------------|------------------------|-----------------|
| Lectures:       | 03 Hrs./Week | Continuous Assessment: | 20 Marks        |
| Tutorial:       | Hr./Week     | In-Sem Exam:           | <b>30 Marks</b> |
|                 |              | End-Sem Exam:          | 50 Marks        |
| Credits:        | 03           | Total:                 | 100 Marks       |
|                 |              |                        |                 |

### **Prerequisite Course:**

- 1. Knowledge of semiconductor material, basic electronics switches and its characteristics.
- 2. Basic concepts of circuits, analog and digital electronics

Course Objectives: The course aims to impart the knowledge of the student in:

- 1. Fundamental of power electronics switching devices and their characteristics
- 2. Concepts and characteristics of Single phase and Three phase controlled rectifiers
- 3. Functions of different modes of inverter and modulation techniques
- 4. Operation, switching regulators and basic topologies of DC DC converters
- 5. Operation of AC voltage controller and its types of configuration

## **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|            | Course Outcome (s)                                                                                             | Bloom | i's Taxonomy |
|------------|----------------------------------------------------------------------------------------------------------------|-------|--------------|
|            | Course Outcome (s)                                                                                             | Level | Descriptor   |
| <b>CO1</b> | <b>Distinguish</b> the types of power semiconductor devices, and analyze their switching characteristics       | 2     | Understand   |
| CO2        | <b>Demonstrate</b> the operation of single phase controlled rectifiers, and analyze its characteristics        | 3     | Apply        |
| CO3        | <b>Demonstrate</b> the operation of three phase controlled rectifiers, and analyze its characteristics         | 3     | Apply        |
| CO4        | <b>Apply</b> the different modulation techniques to PWM inverters and identify the harmonic reduction methods. | 3     | Apply        |
| CO5        | <b>Choose</b> the appropriate DC-DC converters for different applications                                      | 3     | Apply        |
| CO6        | <b>Understand</b> operation of cyclo-converter and matrix converter in AC-AC applications.                     | 2     | Understand   |

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

| mappin |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3   | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO2    | 2   | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO3    | 3   | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO4    | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -   | 1    | -    | -    | 2    | 2    |
| CO5    | 3   | 2   | 1   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO6    | 3   | 3   | 3   | 1   | 1   | -   | -   | -   | -   | 1    | _    | -    | 1    | 1    |

|                                                                                                                                                                                  | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--|--|--|--|--|--|
| UNIT-I                                                                                                                                                                           | POWER SEMICONDUCTOR DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs                | СО  |  |  |  |  |  |  |
|                                                                                                                                                                                  | Introduction - VI and switching characteristics of power semiconductor<br>devices: Power Diode, Thyristor, BJT, MOSFET, IGBT - SCR two transistor<br>analogies - SCR Protection circuits - SCR firing circuits - SCR Commutation<br>techniques - GTO                                                                                                                                                                                                                                                                                                                                                                                                     | 09                 | CO1 |  |  |  |  |  |  |
| UNIT-II                                                                                                                                                                          | SINGLE PHASE AC to DC CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs                | CO  |  |  |  |  |  |  |
|                                                                                                                                                                                  | Principle of phase controlled converter - Single phase half and fully controlled converter with R, RL, RLE load - Derivation of average output current and voltage - Derivation of RMS output current and voltage - Freewheeling diode - Effect of source Inductance - Dual converter                                                                                                                                                                                                                                                                                                                                                                    | 06                 | CO2 |  |  |  |  |  |  |
| UNIT-III                                                                                                                                                                         | THREE PHASE AC to DC CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs                | CO  |  |  |  |  |  |  |
|                                                                                                                                                                                  | Three phase half and fully controlled converter with R, RL load - Derivation of average output current and voltage – Derivation of RMS output current and voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03                 | CO3 |  |  |  |  |  |  |
| UNIT-IV                                                                                                                                                                          | DC to AC CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs                | CO  |  |  |  |  |  |  |
|                                                                                                                                                                                  | Principle of operation Single phase voltage source inverters - Three phase voltage source inverters - 120 <sup>o</sup> and 180 <sup>o</sup> mode operation - Voltage control of inverter using PWM, Single PWM, Multiple PWM, Sinusoidal PWM and Modified SPWM - Harmonic reduction techniques - Single phase current source inverter                                                                                                                                                                                                                                                                                                                    |                    |     |  |  |  |  |  |  |
| UNIT-V                                                                                                                                                                           | DC to DC CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs                | CO  |  |  |  |  |  |  |
|                                                                                                                                                                                  | DC Chopper : Principle of chopper operations - Step up and step down<br>chopper - control strategy - Switched mode regulators - Buck, boost, buck<br>boost regulators - Operation of two quadrant and four quadrant DC choppers<br>with R and RL load – Introduction to Voltage, Current and Load commutated<br>chopper                                                                                                                                                                                                                                                                                                                                  | 09                 | CO5 |  |  |  |  |  |  |
| UNIT-VI                                                                                                                                                                          | AC to AC CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs                | CO  |  |  |  |  |  |  |
|                                                                                                                                                                                  | AC Voltage controllers: Single phase AC voltage controller with R and RL<br>load – Control Strategy - Cycloconverter - Step up and step down - Principle<br>of operation of single phase to single phase cycloconverter - Principle of<br>operation of single phase to three phase cycloconverter - Matrix converter                                                                                                                                                                                                                                                                                                                                     | 09                 | CO6 |  |  |  |  |  |  |
| [T2] Ned M<br>[T3] B.W. W<br>[T4] Ashfaq<br>[T5] Dr. P.S<br><b>References</b><br>[R1] Vedam<br>[R2] M. D. S<br>[R3] Jai P. A<br>[R4] L. Uma<br>[R5] V.R. M<br><b>E-reference</b> | Rashid - Power Electronics 2nd Edition, Pearson publication<br>ohan, T.M. Undel and, W.P. Robbins - Power Electronics, 3rd Edition, John Wil<br>Villiams: Power Electronics 2nd edition, John Wiley and sons<br>Ahmed- Power Electronics for Technology, LPE Pearson Edition.<br>Bimbhra, Power Electronics, Third Edition, Khanna Publication.<br>Subramanyam - Power Electronics , New Age International , New Delhi<br>Singh and K. B. Khandchandani, Power Electronics, Tata McGraw Hill<br>grawal, Power Electronics systems theory and design LPE, Pearson Education,<br>anand, Power Electronics – Essentials and Applications Wiley Publication. | Asia<br>University |     |  |  |  |  |  |  |

# **EE305A: RENEWABLE ENERGY SOURCES**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Teaching Scheme     Examination Scheme                                                                                              |                      |         |          |           |                  |           |           |       |          |         |         |                 |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|----------|-----------|------------------|-----------|-----------|-------|----------|---------|---------|-----------------|-------|--|
| Teachi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ing Scl                                                                                                                             | neme                 |         |          |           |                  |           |           |       |          |         |         |                 |       |  |
| Lectur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     |                      |         | 0        | 3 Hrs./   |                  |           | tinuou    |       | sment:   |         |         |                 | Marks |  |
| Tutori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ial:                                                                                                                                |                      |         |          | H         | r/Weel           |           | Sem Ex    |       |          |         |         | <b>30 Marks</b> |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                      |         |          |           |                  |           | -Sem H    | Exam: |          |         |         | 50 Marks        |       |  |
| Credit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     | 0                    |         |          | 03        |                  | Tota      | al:       |       |          |         |         | 100 N           | Marks |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Prerequisite Course:</li> <li>1. Basic Electrical and Electronics Engineering</li> <li>2. Electrical Technology</li> </ul> |                      |         |          |           |                  |           |           |       |          |         |         |                 |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Objectives                                                                                                                   |                      |         |          |           |                  |           |           |       |          |         |         |                 |       |  |
| <ol> <li>To create awareness about the importance of renewable technology for sustainable future.</li> <li>Impart the knowledge of solar power generation and wind power generation.</li> <li>Introduce forth coming renewable technologies and storage systems in renewable generation.</li> <li>To participate in reducing the use of energy wherever possible for each individuals in the society.</li> <li>To enhance the use of renewable energy by understanding its role towards environment.</li> <li>To develop the solar PV array model or a wind mill for any one commercial application through MATLAB.</li> </ol> |                                                                                                                                     |                      |         |          |           |                  |           |           |       |          |         |         |                 |       |  |
| Cours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Outc                                                                                                                              | omes (               | COs):   |          |           |                  |           |           |       |          |         |         |                 |       |  |
| After s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | success                                                                                                                             | ful com              | pletion | of the   | course,   | student          | t will be | e able to | 5     |          |         |         |                 |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                      | Co      | urse O   | utcome    | (s)              |           |           |       |          | Bloon   | n's Tax | onomy           |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                      |         |          |           |                  |           |           | 1     | Leve     | el      |         | criptor         |       |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | critic                                                                                                                              | ally ana             |         | dividua  | l role to | generation wards |           |           |       | 2        |         | Unde    | rstandi         | ng    |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relat                                                                                                                               | e solar              | power g | generati | ion and   | its utili        | zation.   |           |       | 3        |         | Ap      | plying          |       |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anal                                                                                                                                | yse win              | d powe  | r gener  | ation ar  | nd its ut        | ilizatio  | n.        |       | 4        |         | An      | alyzing         |       |  |
| <b>CO4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Expla                                                                                                                               | ain bior             | nass po | wer ger  | neration  | and its          | utiliza   | tion.     |       | 2        |         | Unde    | rstandi         | ng    |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     | yse tren<br>ge syste | •       | newabl   | e energ   | y source         | es and o  | energy    |       | 4        |         | An      | alyzing         |       |  |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     | e princi<br>cations. |         | storage  | e techno  | ologies a        | and the   | ir        |       | 3        |         | Aţ      | plying          |       |  |
| Mappir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     |                      |         | es to Pr | ogram     | Outcom           | es (PO    | s) & Pr   | ogram | Specific | c Outco | mes (P  | SOs):           |       |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PO1                                                                                                                                 | PO2                  | PO3     | PO4      | PO5       | PO6              | PO7       | PO8       | PO9   | PO10     | PO11    | PO12    | PSO1            | PSO2  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                   | 1                    | 2       | 1        | 1         | 3                | 3         | 2         | 2     | 2        | 2       | 3       | 2               | 3     |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                   | 2                    | 2       | 2        | 2         | 2                | 3         | -         | -     | -        | 2       | 3       | 3               | 3     |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                   | 2                    | 2       | 2        | 1         | 2                | 3         | -         | -     | -        | 2       | 3       | 3               | 3     |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                   | 2                    | 1       | 2        | 1         | 2                | 2         | -         | 1     | 1        | 2       | 2 3 3   |                 |       |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                   | 1                    | 2       | 1        | 1         | 2                | 3         | -         | -     | -        | 2       | 3       | 3               | 2     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                      |         |          |           |                  |           |           |       | -        |         |         |                 |       |  |

Sanjivani College of Engineering, Kopargaon

2022-2023

|                    | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I             | INTRODUCTION TO RENEWABLE ENERGY SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. | СО  |
|                    | Energy sources: classification of energy sources, introduction to renewable<br>energy, renewable energy trends, and key factors affecting renewable energy<br>supply, advantages and disadvantages of RES and their uses. Critical analysis of<br>individual role towards energy utilization towards environment conservation.                                                                                                                                                                                                                                 | 8    | CO1 |
| UNIT-II            | SOLAR ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO  |
|                    | PV power generation, basic principle of power generation in PV cell, technology for fabrication of photovoltaic devices, efficiency of PV cell, characteristics curves of PV cell, solar thermal power generation, solar thermal conversion: basics, solar concentrator and tracking system, flat plate collectors-liquid and air type, theory of flat plate collectors, selective coatings, advanced collectors: ETC, Solar Pond. Modelling of solar PV array for a commercial application.                                                                   | 8    | CO2 |
| UNIT-III           | WIND ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | СО  |
|                    | Power available in wind, wind turbine power & torque characteristics, typesof<br>rotors, characteristics of wind rotor, local effects, wind shear, turbulence &<br>acceleration effects, measurement of wind, wind speed statistics, energy<br>estimation of wind regimes, capacity factor, aerodynamics of wind turbines,<br>airfoil, lift & drag characteristics, power coefficient & tip speed ratio<br>characteristics, electrical generator machines in wind energy systems.<br>Modelling of a wind mill for commercial application integrated with grid. | 8    | CO3 |
| UNIT-IV            | BIOMASS ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. | СО  |
|                    | Overview of biomass as energy source, biomass as a fuel, physicochemicaland<br>thermal characteristics of biomass as fuel, biochemical conversion of biomass<br>for energy production, liquid biofuel, energy plantation- overview on energy<br>plantation, basis of selecting the plants for energy plantation, waste land<br>utilization through energy plantation.                                                                                                                                                                                          | 8    | CO4 |
| UNIT-V             | FORTHCOMING RENEWABLE TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | СО  |
|                    | Geothermal Energy Generation, ocean-thermal energy generation, tidalenergy generation, magneto hydro dynamic power generation- working, layout, different components, advantages, limitations.                                                                                                                                                                                                                                                                                                                                                                 | 8    | CO5 |
| UNIT-VI            | STORAGE TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs. | СО  |
|                    | Introduction, need for storage for RES, basic thermodynamic and electrochemical principles, classification, traditional energy storage system-<br>battery, fuel cell, principle of operation, types, applications for power generation.                                                                                                                                                                                                                                                                                                                        | 8    | CO6 |
| Text Books:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L    |     |
| [T2] G. S. Sa      | Godfrey, "Renewable Energy", (2nd edition), Oxford University Press, 2004.<br>awhney, "Non-Conventional Resources of Energy", PHI Publication 2012.<br>ai, Non conventional energy sources, Khanna publication                                                                                                                                                                                                                                                                                                                                                 |      |     |
| <b>References:</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |

[R1] Gary-L. Johnson Wind Energy Systems Tata Mc-Graw-Hill Book Company.

[R2] S. P. Sukhatme, J. K. Nayak Solar Energy- Principles of Thermal Collection and Storage (3rd ed.), Tata McGraw-Hill Publication.

[R3] Paul Gipe Wind Power, Renewable Energy for Home, Farm, and Business.

[R4] G.N. Tiwari, Solar Energy: Fundamentals, Design, Modeling and Applications Narosa Publication

#### **E-References**

- [1] https://nptel.ac.in/courses/121/106/121106014/
- [2] <u>https://nptel.ac.in/courses/103/103/103103206/</u>
- [3] <u>https://onlinecourses.swayam2.ac.in/nou22\_ge17/course</u>

| EE3 | <b>05B:</b> | SMA | RT ( | RID |
|-----|-------------|-----|------|-----|
|     |             |     |      |     |
|     |             |     |      |     |

| Teachin                                                                           | g Scheme                                                                                                                                                                                                                                                                                                                              | <b>Examination Sch</b>                                            | eme                    |                |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|----------------|--|--|--|--|--|--|
| Lecture                                                                           |                                                                                                                                                                                                                                                                                                                                       | Continuous Asses                                                  | ssment:                | 20 Marks       |  |  |  |  |  |  |
| Tutoria                                                                           | l: Hr/Week                                                                                                                                                                                                                                                                                                                            | In-Sem Exam:                                                      |                        | 30 Marks       |  |  |  |  |  |  |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                       | End-Sem Exam:                                                     |                        | 50 Marks       |  |  |  |  |  |  |
| Credits                                                                           |                                                                                                                                                                                                                                                                                                                                       | Total:                                                            |                        | 100 Marks      |  |  |  |  |  |  |
| 1. Bas<br>2. Bas                                                                  | <b>uisite Course:</b><br>sic knowledge of power systems and power elec<br>sic knowledge of computer and communications<br><b>Objectives</b>                                                                                                                                                                                           |                                                                   |                        |                |  |  |  |  |  |  |
| <ol> <li>To d</li> <li>To d</li> <li>To in</li> <li>To e</li> <li>To g</li> </ol> | earn the fundamentals, objectives and architecture<br>escribe the aspects of measurement equipment and<br>escribe the power electronic converters and energy<br>mpart the knowledge about the communication tec<br>xplain the concept of micro grid.<br>et acquainted with the application of smart grid co<br><b>Outcomes (COs):</b> | l automation techno<br>y storage technologi<br>hnology of Smart g | ies used in sn<br>rid. | -              |  |  |  |  |  |  |
| After su                                                                          | ccessful completion of the course, student will b                                                                                                                                                                                                                                                                                     | e able to                                                         |                        |                |  |  |  |  |  |  |
|                                                                                   | Course Outcome (s)                                                                                                                                                                                                                                                                                                                    |                                                                   | Bl                     | oom's Taxonomy |  |  |  |  |  |  |
|                                                                                   | Course Outcome (s)                                                                                                                                                                                                                                                                                                                    |                                                                   | Level                  | Descriptor     |  |  |  |  |  |  |
| CO1                                                                               | Differentiate the Conventional and Smart Grid                                                                                                                                                                                                                                                                                         |                                                                   | 2                      | Understanding  |  |  |  |  |  |  |
| CO2                                                                               | Formulate solutions in the areas of smart substatigeneration and wide area measurements.                                                                                                                                                                                                                                              | tions, distributed                                                | 3                      | Applying       |  |  |  |  |  |  |
| CO3                                                                               | CO3 Use the suitable converters and energy storage technologies for 3 Applying smart grid applications                                                                                                                                                                                                                                |                                                                   |                        |                |  |  |  |  |  |  |
| <b>CO4</b>                                                                        | Select the suitable communication networks for applications                                                                                                                                                                                                                                                                           | smart grid                                                        | Understanding          |                |  |  |  |  |  |  |
| CO5                                                                               | Describe the structure and control of micro grid.                                                                                                                                                                                                                                                                                     |                                                                   | 2                      | Understanding  |  |  |  |  |  |  |
| 005                                                                               | U                                                                                                                                                                                                                                                                                                                                     |                                                                   | -                      | e naerstanang  |  |  |  |  |  |  |

| Mappir | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1    | 3                                                                                        | 2   | 2   | 2   | 2   | 1   | -   | -   | -   | -    | -    | 2    | 3    | 3    |  |
| CO2    | 3                                                                                        | 2   | 3   | 3   | 3   | 1   | -   | -   | -   | -    | -    | 2    | 3    | 3    |  |
| CO3    | 3                                                                                        | 2   | 3   | 2   | 3   | 1   | -   | -   | -   | -    | -    | 2    | 3    | 3    |  |
| CO4    | 3                                                                                        | 2   | 3   | 3   | 3   | 1   | -   | I   | -   | I    | I    | 2    | 3    | 3    |  |
| CO5    | 3                                                                                        | 2   | 3   | 3   | 3   | 1   | _   | -   | _   | -    | -    | 2    | 3    | 3    |  |
| CO6    | 3                                                                                        | 2   | 2   | 2   | 3   | 1   | -   | -   | -   | -    | -    | 2    | 3    | 3    |  |

|                      | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| UNIT-I               | INTRODUCTION TO SMART GRID                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | COs     |
|                      | Background and history of smart Grid evolution, Definition and characteristics of smart grid, Benefits of smart grid, Smart Grid vision and its realisation, Motives behind developing the Smart Grid concept, Examples of Smart Grid projects/initiatives, Smart Grid versus conventional electrical networks, Smart Grid basic infrastructure, Functions of smart grid components.                                                                                  | 08   | CO1     |
| UNIT-II              | SMART GRID MEASUREMENT AND AUTOMATION TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | CO      |
|                      | Smart metering, Communications infrastructure and protocols for smart metering,<br>Demand Side Integration, Distribution Automation Equipment - Current transformers,<br>Voltage Transformers, Intelligent Electronic Devices, Fault in the distribution system,<br>Distribution Management System – SCADA, Modelling and Analysis tool,<br>Applications, Transmission System Operation- IEDs, Phasor Measurement unit ,<br>Energy Management, wide area applications | 10   | CO2     |
| UNIT-III             | POWER ELECTRONICS AND ENERGY STORAGE IN SMART GRID                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | СО      |
|                      | Power electronics in the Smart Grid - Renewable energy generation, Fault current limiting, Shunt compensation, Series compensation, FACTS, HVDC. Energy storage technologies - Batteries, Flow Battery, Fuel and hydrogen electrolyzer, fuel cells, DLC, SMES, Case study.                                                                                                                                                                                            | 09   | CO3     |
| UNIT-IV              | COMMUNICATION TECHNOLOGY FOR SMART GRID                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO      |
|                      | Communication Technology- IEEE 802 series, Mobile communications Multi-protocol label switching, Power line communication, Standard for information exchange - Standards for smart metering, Modbus, DNP3, IEC 61850, Introduction to cyber security standards.                                                                                                                                                                                                       | 07   | CO4     |
| UNIT-V               | MICROGRIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | CO      |
|                      | Microgrid Concept and Structure, Building Blocks of a Microgrid, Operation Modes,<br>Control Mechanism of the Connected Distributed Generators in a Microgrid, Speed<br>Control of Classical Distributed Generators, Control of Inverter-based Distributed<br>Generators, Hierarchical Microgrid Control, DC Microgrid Control.                                                                                                                                       | 06   | CO5     |
| UNIT-VI              | APPLICATION OF SMART GRID CONCEPT TO DISTRIBUTION<br>NETWORKS                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs. | СО      |
|                      | Introduction, Smart distribution networks versus conventional distribution Networks,<br>Basic building blocks of a smart distribution network, Evolvement of distribution<br>networks into Smart Grids (FENIX, ADDRESS).                                                                                                                                                                                                                                              | 05   | CO6     |
| Text Books:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | •       |
| Serie<br>[T2]. Janak | nan K.Salman, "Introduction to Smart Grid: Concepts, technologies and Evolution", IET Eng<br>s 94, UK, 2017<br>ca Ekanayake et al, "Smart Grid Technology and Applications", John Wiley & Sons, USA, 2<br>an Bevrani etal, "Microgrid Dynamics and Control", JohnWiley & Sons, USA, 2017.                                                                                                                                                                             | e e  |         |
| References:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |
| Sons,                | s Momoh, "SMART GRID Fundamentals of Design and Analysis", IEEE Press, Published<br>, 2012                                                                                                                                                                                                                                                                                                                                                                            | ·    | n Wiley |
|                      | jof et al "Smart Grid and Microgrids: Concepts and Applications", John Wiley & Sons, 202                                                                                                                                                                                                                                                                                                                                                                              | 22   |         |
|                      | erences                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |

# **EE306: MICROCONTROLLERS AND APPLICATIONS LABORATORY**

| Teach      | ing Scheme Exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ination Scheme        |            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| Lectu      | res: Hrs./Week Oral:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 25 Marks   |
| Tutor      | ial: Hr/Week Pract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ical:                 | Marks      |
| Practi     | ical: 02 Hr/Week Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Work:                 | Marks      |
| Credi      | ts: 01 Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                     | 25 Marks   |
| Prere      | quisite Course:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |
| 1          | . Analog and Digital Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |
| 2.         | . Basic Electrical and Electronics Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |            |
| Cours      | se Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |            |
| 1.         | To understand the differences between microcontrollers and microcontroll | croprocessors learn   |            |
|            | microcontroller architecture & describe the features of a typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |
| 2.         | To use the 8051 addressing modes and instruction set and apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y this knowledge to p | erform     |
|            | programs - arithmetic & logic operations, data & control transf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |
|            | operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | -          |
| 3.         | To define the protocol for serial communication and understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d the microcontroller |            |
|            | development systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |            |
| 4.         | To build and test a microcontroller-based system; interface the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system to switch, key | pad, and   |
|            | display.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |            |
| 5.         | To understand Arduino Board and its applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |
| 6.         | To understand Embedded systems terminologies in terms of ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ectrical Engineering  |            |
| Cours      | se Outcomes (COs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |            |
| After      | successful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |            |
|            | Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bloom's               | Taxonomy   |
|            | Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level                 | Descriptor |
| CO1        | Understand the utilization of modern tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                     | Understand |
| CO2        | Solve assembly language programs based on the instruction s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et of 4               | Analyze    |
|            | 8051.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |            |
| CO3        | Create Assembly Language Program for various applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                     | Create     |
| CO4        | Implement 8051 based hardware system and for LED,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | Apply      |
|            | keyboard and different motors interfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |            |
| CO5        | Execute programs and interface different component with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                     | Evaluate   |
|            | Arduino board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |            |
| <b>CO6</b> | Implement Real life applications using Advance controllers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                     | Create     |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1   | 3                                                                                        | 2   | 2   | -   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 1    |  |
| CO2   | 3                                                                                        | 3   | 2   | -   | 2   | 1   | 1   | 1   | 1   | 2    | 2    | 1    | 2    | 1    |  |
| CO3   | 3                                                                                        | 2   | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 3    | 2    | 1    | 2    | 1    |  |
| CO4   | 3                                                                                        | 3   | 2   | -   | 2   | 1   | 1   | 1   | 1   | 1    | 2    | 1    | 2    | 1    |  |
| CO5   | 3                                                                                        | 3   | 2   | -   | 2   | 1   | 1   | 1   | 1   | 2    | 2    | 1    | 2    | 1    |  |
| CO6   | 3                                                                                        | 2   | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 3    | 2    | 1    | 2    | 1    |  |

2022-2023

|        | Course Contents                                                                                           |     |                   |
|--------|-----------------------------------------------------------------------------------------------------------|-----|-------------------|
| Ex. No | Name of Experiment                                                                                        | Hrs | CO                |
| 1      | Introduction to Keil IDE and Proteus                                                                      | 2   | CO1               |
| 2      | Assembly Language Program for arithmetic operation of 8 bit numbers                                       | 2   | CO1<br>CO2        |
| 3      | Assembly Language Program for rotate, bit, swap and logical operations etc.                               | 2   | CO1<br>CO2        |
| 4      | Assembly Language program to arrange 8 bit numbers stored in arrayin ascending order and descending order | 2   | CO1<br>CO2<br>CO3 |
| 5      | Interfacing of DAC 0800 with 8051 microcontroller.                                                        | 2   | CO1<br>CO2<br>CO4 |
| 6      | Interfacing of LED, relay, DC motor or stepper motor with microcontroller. (Proteus simulation)           | 2   | CO1<br>CO2<br>CO4 |
| 7      | Interfacing of LED to blink after every 1 second using arduino board                                      | 2   | CO1<br>CO2<br>CO5 |
| 8      | Display data using serial communication.                                                                  | 2   | CO1<br>CO2<br>CO5 |
| 9      | Interfacing of temperature sensor (LM35) using Arduino Board                                              | 2   | CO1<br>CO2<br>CO5 |
| 10     | Interfacing of keypad/LCD using Arduino Board                                                             | 2   | CO1<br>CO2<br>CO5 |
| 11     | Implementation of Real life applications using Advance Microcontroller.                                   | 2   | CO1<br>CO2<br>CO6 |
| Any 08 | experiments to be performed from above list.                                                              |     |                   |

## **Text Books:**

[T1] Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, "The

Microcontroller and Embedded Systems", Second Edition, Pearson, 2012.

[T2] Ayala K. J., "8051 Microcontroller: Architecture, Programming and applications" Second Edition, Penram international.

[T3] SubrataGhoshal, "8051 microcontroller", Pearsons Publishers.

[T4] Started with Arduino by Massimo Banzi and Michael Shiloh Published by Maker Media, Inc. [T5] Arduino microcontroller processing for everyone-Steven F Barret, Morgan and Claypool

### Publisher. References:

[R1] V Udayashankara and M S MallikarjunaSwamy, "8051 Microcontroller, Hardware, software and applications", TATA McGraw Hill.

[R2] Scott Mackenzie, "8051 Microcontroller", Pearson Education.

[R3] Ajay Deshmukh, "Microcontroller 8051" –TATA McGraw Hill.

[R4] Getting Started With Arduino: A Beginner's Guide by by Brad Kendall (Author), Justin Pot (Editor), Angela Alcorn (Editor)

[R5] Arduino Cookbook, 2nd Edition by Michael Margolis published by O'Reilly Media

# **EE307: ELECTRICAL MACHINES II LABORATORY**

| ELSAT. ELECTRICAL MACHINES II LADORATORI |             |                    |          |           |           |                        |           |           |          |          |                  |               |             |           |  |
|------------------------------------------|-------------|--------------------|----------|-----------|-----------|------------------------|-----------|-----------|----------|----------|------------------|---------------|-------------|-----------|--|
| Teachi                                   | ng Scl      | heme               |          |           |           |                        | Exa       | minati    | on Sch   | eme      |                  |               |             |           |  |
| Lectur                                   |             |                    |          |           |           | s./Weel                |           |           |          |          |                  |               |             | Marks     |  |
| Tutoria                                  | al:         |                    |          |           | H         | r./Weel                | x Pra     | ctical:   |          |          |                  |               | <b>50</b> I | Marks     |  |
| Practic                                  |             |                    |          |           | 02 H      | r./Weel                |           | m Wor     | k:       |          |                  |               |             | Marks     |  |
| Credit                                   |             | ~                  |          |           |           | 01                     | l Tota    | al:       |          |          |                  |               | <b>50</b> N | Marks     |  |
| Prereq<br>1.                             |             |                    |          | gineeri   | ng 2.     | Electr                 | ical Ma   | chines    | I        |          |                  |               |             |           |  |
| Course                                   | e Obje      | ctives             |          |           |           |                        |           |           |          |          |                  |               |             |           |  |
|                                          | 1.          | Learn c            | construc | ction &   | workin    | ig princ               | iple of   | three pl  | hase sy  | nchrono  | ous mac          | hines.        |             |           |  |
| ,                                        |             |                    |          |           |           | or & cal               |           |           |          |          |                  |               |             |           |  |
|                                          |             | -                  |          | nods of   | starting  | g 3- pha               | se sync   | chronou   | is moto  | r, & its | operation        | on und        | er Diffe    | rent      |  |
|                                          |             | conditi            |          | . 1       | .1 1      | 0.1                    |           |           |          |          |                  |               |             |           |  |
|                                          |             |                    | -        |           |           | s of thre              | -         |           |          |          |                  |               |             |           |  |
|                                          |             |                    |          | -         |           | ircle dia<br>f single- | -         |           |          |          |                  |               |             |           |  |
|                                          |             |                    |          |           |           | i singic.              | phase     | mauen     |          | <i>.</i> |                  |               |             |           |  |
|                                          |             | omes (             |          |           |           |                        |           |           |          |          |                  |               |             |           |  |
| After s                                  | uccess      | ful com            | pletion  | of the    | course,   | student                | t will be | e able to | 0        |          |                  |               |             |           |  |
|                                          |             |                    |          | C         | 0 (       |                        |           |           |          |          | Bloom's Taxonomy |               |             | my        |  |
|                                          |             |                    |          | Cours     | e Outc    | ome (s)                |           |           |          |          | Lev              | el Descriptor |             |           |  |
| CO1                                      |             | • •                |          |           |           | of three prent spe     | -         |           |          | r, and   | 4                | Analyzi       |             | zing      |  |
| CO2                                      | Calc        | culate v           | arious p | paramet   | ters of e | electrica              | l mach    | ines      |          |          | 5                |               | Evaluate    |           |  |
| CO3                                      |             | mine th<br>hines   | e proce  | ss and    | determi   | ne volta               | age reg   | ulation   | of elect | trical   | 4                | 4             |             | Analyzing |  |
| CO4                                      | Ana         | lyze the           | e respor | nse of s  | ynchroi   | nous mo                | otors an  | nd alteri | nator    |          | 4                |               | Analyzing   |           |  |
| CO5                                      | appl<br>and | ications<br>drives | s of ele | ctrical 1 | nachine   | pes of e<br>es in ele  | ctrical   | power     | enginee  | ering    | 3                |               | Apply       | ing       |  |
| CO6                                      | oper        | • •                | haracte  | ristics,  | -         | wer cap<br>require     |           |           |          |          | 4                |               | Analyz      | zing      |  |
| Mapping                                  | g of Co     | urse Ou            | tcomes   | to Progr  | am Out    | comes (I               | POs) &    | Progran   | n Specif | ic Outec | mes (PS          | SOs):         |             |           |  |
|                                          | PO1         | PO2                | PO3      | PO4       | PO5       | PO6                    | PO7       | PO8       | PO9      | PO10     | PO11             | PO12          | PSO1        | PSO2      |  |
| CO1                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
| CO2                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
| CO3                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
| CO4                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
| CO5                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
| CO6                                      | 3           | 2                  | 2        | 1         | 1         | 1                      | 1         | 1         | 1        | 1        | 2                | 2             | 3           | 2         |  |
|                                          | ~           | _                  | _        | -         | -         | -                      | -         | -         | -        | -        | -                |               |             |           |  |

Sanjivani College of Engineering, Kopargaon

2022-2023

|        | Course Contents                                                                                                                                |     |                   |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|--|--|--|--|--|--|
| Ex. No | Name of Experiment                                                                                                                             | Hrs | СО                |  |  |  |  |  |  |
|        | To perform any eight experiments from the following list.                                                                                      |     |                   |  |  |  |  |  |  |
| 1      | Speed control of three phase induction motor by V/F method                                                                                     | 2   | CO1<br>CO5<br>CO6 |  |  |  |  |  |  |
| 2      | Speed control of three phase induction motor by rotor resistance control method.                                                               | 2   | CO1<br>CO5<br>CO6 |  |  |  |  |  |  |
| 3      | Load test on Single -phase induction motor.                                                                                                    | 2   | CO2<br>CO5<br>CO6 |  |  |  |  |  |  |
| 4      | Determination of Regulation of alternator by direct loading.                                                                                   | 2   | CO3<br>CO5<br>CO6 |  |  |  |  |  |  |
| 5      | Determination of regulation of cylindrical rotor alternator by following methods a) EMF method b) MMF method.                                  | 2   | CO3<br>CO5<br>CO6 |  |  |  |  |  |  |
| 6      | Determination of regulation of cylindrical rotor alternator by<br>Potier method.                                                               | 2   | CO3<br>CO5<br>CO6 |  |  |  |  |  |  |
| 7      | Load test on three phase synchronous motor.                                                                                                    | 2   | CO2<br>CO5<br>CO6 |  |  |  |  |  |  |
| 8      | Determination of regulation of salient pole alternator by slip test.                                                                           | 2   | CO3<br>CO5<br>CO6 |  |  |  |  |  |  |
| 9      | Load test on Single-phase series motor.                                                                                                        | 2   | CO2<br>CO5<br>CO6 |  |  |  |  |  |  |
| 10     | No load and blocked-rotor test on a single phase Capacitor-start<br>induction motor and Determination of its equivalent circuit<br>parameters. | 2   | CO2<br>CO5<br>CO6 |  |  |  |  |  |  |
| 11     | Performance characteristics of single phase series motor using circle diagram.                                                                 | 2   | CO2<br>CO5<br>CO6 |  |  |  |  |  |  |
| 12     | Synchronization of three phase alternator by Lamp and Synchroscope methods.                                                                    | 2   | CO4<br>CO5<br>CO6 |  |  |  |  |  |  |
| 13     | Simulation of three phase induction motor on MATLAB to obtain its performance.                                                                 | 2   | CO1<br>CO5<br>CO6 |  |  |  |  |  |  |
| 14     | V and inverted V curve of synchronous motor at constant load.                                                                                  | 2   | CO4<br>CO5<br>CO6 |  |  |  |  |  |  |

**Text Books:** 

[T1] Nagrath and Kothari, Electrical Machines, 2nd Ed., Tata McGraw Hill.

[T2] S. K. Bhattacharya, Electrical Machines, Tata McGraw Hill.

[T3] A.S. Langsdorf, Theory of Alternating Current Machinery, Tata McGraw Hill

[T4] P. S. Bimbhra, Electric Machinery, Khanna Publications.

[T5] B.R. Gupta and Vandana Singhal -Fundamentals of Electric Machines, New Age International (P) Ltd.

[T6] E. Openshaw Taylor, Performance and design of a.c. commutator motors, Wheeler Publishing.

[T7] V. K. Mehta and Rohit Mehta, Principles of Electrical Machines, S Chand Publications

[T8] Krishna Reddy – Electrical Machines vol.II and III, SCITECH publications.

[T9] Ashfaq Husain, Electrical Machines, Dhanpat Rai and Co.

[T10] M V Deshpande, Electrical Machines, Prentice Hall of India

**References:** 

[R1] M.G. Say, Performance and Design of A.C. Machines (3rd Ed.), ELBS

[R2] J B Gupta - Theory and performance of Electrical Machines, S K Kataria Publications

[R3] Samarjit Ghosh, Electrical Machines, Pearson Publication.

[R4] Bhag S Guru and Huseyin R Hiziroglu, Electrical Machinary and Transformer, 3rd Edition, Oxford University Press.

[R5] E G Janardanan, Special Electrical Machines, Prentice Hall of India.

[R6] Suvarnsingh Kalsi Application of high Temperature super conductors to electric power equipments (Rotating Machines) Wiley publication.

# **EE308: POWER SYSTEM II LABORATORY**

| Teachi     | ng Scheme                                                          | <b>Examination S</b> | cheme |               |
|------------|--------------------------------------------------------------------|----------------------|-------|---------------|
| Lectur     |                                                                    |                      |       | 25 Marks      |
| Tutoria    | al: Hrs./Week                                                      | Practical:           |       | Marks         |
| Practic    | cal: 02 Hrs./Week                                                  | Term Work:           |       | Marks         |
| Credit     |                                                                    | Total:               |       | 25 Marks      |
|            | quisite Course:                                                    |                      |       |               |
|            | er System – I                                                      |                      |       |               |
|            | vork Analysis                                                      |                      |       |               |
| Course     | e Objectives                                                       |                      |       |               |
| 1. This    | course provides the knowledge of Power System                      | stem Operation       |       |               |
|            | aimed to impart knowledge of Real Time sys                         |                      |       |               |
|            | nderstand use of per unit system and fault an                      | •                    |       |               |
|            | course provides the knowledge of Power flo                         | •                    |       |               |
|            | course provides the knowledge of Power System                      | stem Stability.      |       |               |
| Course     | e Outcomes (COs):                                                  |                      |       |               |
| After s    | uccessful completion of the course, student w                      | vill be able to      |       |               |
|            | Course Outcome (s)                                                 |                      | Bloc  | om's Taxonomy |
|            | Course Outcome (s)                                                 | Ē                    | Level | Descriptor    |
| CO1        | Explain various parameters in a circle diag                        | ram with line        | 2     | Understanding |
|            | parameters.                                                        |                      |       |               |
| CO2        | Develop per unit system to solve various pr                        | roblems.             | 3     | Applying      |
| CO3        | Evaluate admittance matrix with and witho                          | ut mutual            | 5     | Evaluating    |
|            | impedances.                                                        |                      | _     |               |
| <b>CO4</b> | Evaluate different types of faults for balance unbalanced Systems. | ced and              | 5     | Evaluating    |
|            | Creating different types Symmetrical & Un                          | symmetrical          | 6, 4  | Creating and  |
| CO5        | Fault Analysis, and analyzing Power System                         | •                    | о, т  | Analyzing     |
|            | Estimate static measurement of sub-transie                         |                      | 2     | Understanding |
| CO6        | sequence reactance of a synchronous mach                           |                      | ۷     | Understanding |
|            | sequence reactance of a synchronous mach                           | IIIC.                |       |               |

| Mappir | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 2                                                                                        | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 2    |
| CO2    | 2                                                                                        | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 2    |
| CO3    | 2                                                                                        | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 2    |
| CO4    | 3                                                                                        | 3   | 3   | 2   | 2   | 2   | 1   | 1   | 2   | 1    | 1    | 2    | 3    | 3    |
| CO5    | 3                                                                                        | 3   | 3   | 2   | 2   | 2   | 1   | 1   | 2   | 1    | 1    | 2    | 3    | 3    |
| CO6    | 2                                                                                        | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 2    |

|                                                                                       | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                          |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|
| Ex. No                                                                                | Name of Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs.                                   | CO                       |
| 1                                                                                     | Measurement of ABCD parameters of a medium transmission line with magnitude and angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                      | CO1                      |
| 2                                                                                     | Measurement of ABCD parameters of a long transmission line with magnitude and angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                      | CO1                      |
| 3                                                                                     | Performance study of the effect of VAR compensation using capacitor bank on the transmission line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                      | CO1                      |
| 4                                                                                     | Formulation and calculation of Y- bus matrix of a given system using software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                      | CO3                      |
| 5                                                                                     | Static measurement of sub-transient reactance of a salient-pole alternator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                      | CO6                      |
| 6                                                                                     | Measurement of sequence reactance of a synchronous machine (Negative and zero).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                      | CO6                      |
| 7                                                                                     | Plotting of receiving end circle diagrams to evaluate the performance of medium transmission lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                      | CO1                      |
| 8                                                                                     | Solution of a load flow problem using Gauss-Seidel method using software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                      | CO2<br>CO4<br>CO5        |
| 9                                                                                     | Solution of a load flow problem using Newton-Raphson method using software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                      | CO2<br>CO3<br>CO4<br>CO5 |
| 10                                                                                    | Simulation of Symmetrical fault of single machine connected to infinite bus by using Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                      | CO2<br>CO4<br>CO5        |
| 11                                                                                    | Simulation of Unsymmetrical fault of single machine connected to infinite bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                      | CO2<br>CO4<br>CO5        |
| 12                                                                                    | Analyzing of Power System Stability for a given Power System.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                      | CO4                      |
| <b>Fext Boo</b>                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                      |                          |
| [T2]. B R<br>[T3]. Ash<br>[T4]. J.B.                                                  | agrath and D.P. Kothari – Modern Power System Analysis – Tata McGraw Hill, No<br>Gupta, "Power System Analysis and Design", S. Chand.<br>faq Hussain, "Electrical Power Systems", CBS Publication 5th Edition.<br>Gupta. "A course in power systems" S. K. Kataria Publications.<br>R. Murthy, "Power System Analysis", B. S. Publications<br>es:                                                                                                                                                                                                                                                                                                                                                         | ew                                     |                          |
| [R2]. G. V<br>Delhi.<br>[R3]. M.<br>[R4]. Rak<br>[R5]. M.<br>[R6]. Stev<br>[R7]. K. I | <ul> <li>Hadi Sadat: Power System Analysis, Tata McGraw-Hill New Delhi.</li> <li>W. Stagg and El- Abiad – Computer Methods in Power System Analysis – Tata Mc</li> <li>E.El-Hawary, Electric Power Systems: Design and Analysis, IEEE Press, New Yor</li> <li>cash Das Begamudre, "Extra High voltage A.C. Transmission Engineering ", New a</li> <li>A. Pai, Computer Techniques in Power System Analysis, Tata McGraw Hill Public</li> <li>venson W.D. Elements of Power System Analysis (4th Ed.) Tata McGraw Hill, New</li> <li>R. Padiyar: HVDC Transmission Systems, New Age International Publishers Ltd, New I. Elgard – Electric Energy Systems Theory – Tata McGraw Hill, New Delhi.</li> </ul> | k.<br>ge publica<br>ation.<br>w Delhi. | ation.                   |

# **EE309: POWER ELECTRONICS LABORATORY**

| Teaching Scheme        | Examination Scheme  |
|------------------------|---------------------|
| Lectures: Hrs./Weel    | d Oral: Marks       |
| Tutorial: Hr./Weel     | xPractical:50 Marks |
| Practical: 02 Hr./Weel | Term Work: Marks    |
| Credits: 0             | Total: 50 Marks     |
| Prerequisite Course:   |                     |

- 1. Knowledge of semiconductor material, basic electronics switches and its characteristics.
- 2. Basic concepts of circuits, analog and digital electronics

## Course Objectives: The course aims:-

To impart the knowledge of the student in:

- 1. Apply the concepts of power electronic converters for efficient conversion/control of power from source to load.
- 2. Design the power converter with suitable switches meeting a specific load requirement

## **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                      | Bloom's 7 | Faxonomy   |
|-----|---------------------------------------------------------------------------------------------------------|-----------|------------|
|     |                                                                                                         | Level     | Descriptor |
| CO1 | Distinguish the types of power semiconductor devices,<br>and analyze their switching characteristics    | 2         | Understand |
| CO2 | Demonstrate the operation of single phase controlled rectifiers, and analyze its characteristics        | 3         | Apply      |
| CO3 | Demonstrate the operation of three phase controlled rectifiers, and analyze its characteristics         | 3         | Apply      |
| CO4 | Apply the different modulation techniques to PWM inverters and identify the harmonic reduction methods. | 3         | Apply      |
| CO5 | Choose the appropriate DC-DC converters for different applications                                      | 3         | Apply      |
| CO6 | Understand operation of cyclo-converter and matrix converter in AC-AC applications.                     | 2         | Understand |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO2    | 2                                                                                        | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO3    | 3                                                                                        | 2   | 2   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO4    | 3                                                                                        | 3   | 2   | 2   | 2   | -   | -   | -   | -   | 1    | -    | -    | 2    | 2    |
| CO5    | 3                                                                                        | 2   | 1   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |
| CO6    | 3                                                                                        | 3   | 3   | 1   | 1   | -   | -   | -   | -   | 1    | -    | -    | 1    | 1    |

|                                                                                                                                                                                                                                                                                        | Course Contents                                                  |     |     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|-----|--|--|--|--|--|
| Ex. No                                                                                                                                                                                                                                                                                 | Name of Experiment                                               | Hrs | CO  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                      | Static VI characteristic of SCR / GTO                            | 2   | CO1 |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                      | Static VI characteristic of MOSFET / IGBT                        | 2   | CO1 |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                      | Single phase half and fully controlled converters.               | 2   | CO2 |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                      | Three phase half and fully controlled converters.                | 2   | CO3 |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                      | MOSFET based step up and step down chopper                       | 2   | CO5 |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                      | IGBT based Single phase PWM inverters.                           | 2   | CO4 |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                      | Single phase cycloconverter                                      | 2   | CO6 |  |  |  |  |  |
| 8                                                                                                                                                                                                                                                                                      | Simulations of single- phase half and fully controlled converter | 2   | CO1 |  |  |  |  |  |
| 9                                                                                                                                                                                                                                                                                      | Simulations of three- phase half and fully controlled converter  | 2   | CO3 |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                     | Simulation of single and three phase inverter                    | 2   | CO4 |  |  |  |  |  |
| Text Boo                                                                                                                                                                                                                                                                               | ks:                                                              |     |     |  |  |  |  |  |
| <ul> <li>[T1] M. H. Rashid - Power Electronics 2nd Edition, Pearson publication</li> <li>[T2] Ned Mohan, T.M. Undel and, W.P. Robbins - Power Electronics, 3rd Edition, John Wiley and Sons</li> <li>[T3] B.W. Williams: Power Electronics 2nd edition, John Wiley and sons</li> </ul> |                                                                  |     |     |  |  |  |  |  |

[T4] Ashfaq Ahmed- Power Electronics for Technology, LPE Pearson Edition.

[T5] Dr. P.S. Bimbhra, Power Electronics, Third Edition, Khanna Publication.

### **References:**

[R1] Vedam Subramanyam - Power Electronics, New Age International, New Delhi

[R2] M. D. Singh and K. B. Khandchandani, Power Electronics, Tata McGraw Hill

[R3] Jai P. Agrawal, Power Electronics systems theory and design LPE, Pearson Education, Asia

[R4] L. Umanand, Power Electronics – Essentials and Applications Wiley Publication.

[R5] V.R. Moorthi, Power Electronics Devices, circuits, and Industrial applications, Oxford University Press.

## **E-references:**

[E1] NPTEL Web course and video course on Power Electronics by Prof. D.Prasad, IIT, Kharagpur (https://nptel.ac.in/courses/108105066)

# EE310: SKILL BASED CREDIT COURSE

| Teaching Scheme | <b>Examination Scheme</b> |          |
|-----------------|---------------------------|----------|
| Lectures: 01 H  | rs./Week   Term Work:     | 50 Marks |
| Credits:        | 01 Total:                 | 50 Marks |

# Introduction

It aims towards building the skills of the student who has already acquired knowledge through classroom lectures and encourage them to experiment and apply those concepts to strengthen the learning process. In a skill-based classroom, teachers focus on imparting education through planning and practice. To help students to retain concepts, instructors plan, discuss ideas and provide constructive feedback so that students can reflect on the skills gained in classroom. The credit points give learners, employers and institutions a means of describing and comparing the learning outcomes achieved.

## **Course Objectives**

- 1. Spark the creativity, and give a way to move beyond traditional methods and think innovatively.
- 2. Develops critical thinking
- 3. Enhances the collaborative problem solving
- 4. Builds effective written and oral communication
- 5. Develops the effective leadership skills.

### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|            | Course Outcome (s)                                                                                                      | Bloom' | s Taxonomy |
|------------|-------------------------------------------------------------------------------------------------------------------------|--------|------------|
|            | Course Outcome (s)                                                                                                      | Level  | Descriptor |
| CO1        | <b>Understand</b> the skills requirement to apply those concepts which has already acquired knowledge into experiments. | 2      | Understand |
| CO2        | <b>Understand</b> the concept and use in solving engineering problems.                                                  | 2      | Understand |
| CO3        | Apply core concepts of any applied problems in engineering.                                                             | 3      | Apply      |
| <b>CO4</b> | <b>Analyse</b> the problem of which kind and use particular method for finding solution in engineering field.           | 4      | Analyse    |
| CO5        | Awareness of how to give and receive professional constructive feedback                                                 | 4      | Analyse    |
|            | Course Contents                                                                                                         |        |            |

**Course Contents** 

Students have to do skilled technical certified online courses of at least 16-20 hours. After completion of online courses, students have to produce *Certificate*. Students shall be awarded credits only when they will complete the courses and submit the 20 pages report on the same. 50 marks will be evaluated based on report, online certification and assignments.

The following platforms / software's are recommended :

| Sr. no. | Platform    |  |  |  |  |  |  |  |
|---------|-------------|--|--|--|--|--|--|--|
| 1.      | NPTEL       |  |  |  |  |  |  |  |
| 2.      | edX         |  |  |  |  |  |  |  |
| 3.      | Coursera    |  |  |  |  |  |  |  |
| 4.      | Udemy       |  |  |  |  |  |  |  |
| 5.      | Sill Battle |  |  |  |  |  |  |  |

| 6.  | IBM                        |  |
|-----|----------------------------|--|
| 7.  | Persistent                 |  |
| 8.  | Infosys Headstart          |  |
| 9.  | MATLAB Software            |  |
| 10. | ETAP Software              |  |
| 11. | NEPLAN Simulation Software |  |
| 12. | LabVIEW Software           |  |
| 13. | AUTOSAR methodologies      |  |
| 14. | Proteus Software           |  |
| 15. | PSIM Software              |  |

# **MC311: ELECTRICAL ENERGY CONSERVATION AND AUDITING**

| Teacl                                                                                                                                                                                                                                                                           | hing Scheme                                                                             |                      | Examination Scheme |                        |               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|--------------------|------------------------|---------------|--|--|--|--|
| Lectu                                                                                                                                                                                                                                                                           | ires:                                                                                   | 01 Hrs./Week         | <b>Continuous</b>  | Continuous Assessment: |               |  |  |  |  |
| Tuto                                                                                                                                                                                                                                                                            | rial:                                                                                   | Hr./Week             | In-Sem Exar        | 1-Sem Exam:            |               |  |  |  |  |
|                                                                                                                                                                                                                                                                                 |                                                                                         |                      | End-Sem Exam:      |                        |               |  |  |  |  |
| Cred                                                                                                                                                                                                                                                                            |                                                                                         | No Credits           | Total:             |                        |               |  |  |  |  |
| 1. P<br>2. E                                                                                                                                                                                                                                                                    | equisite Course:<br>lower Systems<br>lectrical Machines<br>rse Objectives               |                      |                    |                        |               |  |  |  |  |
| Cour                                                                                                                                                                                                                                                                            | se Objectives                                                                           |                      |                    |                        |               |  |  |  |  |
| <ol> <li>Understand the current energy scenario and importance of energy conservation.</li> <li>Understand the concepts of energy management.</li> <li>Understand the methods of improving energy efficiency in different electrical systems.</li> </ol> Course Outcomes (COs): |                                                                                         |                      |                    |                        |               |  |  |  |  |
| After successful completion of the course, student will be able to                                                                                                                                                                                                              |                                                                                         |                      |                    |                        |               |  |  |  |  |
|                                                                                                                                                                                                                                                                                 | Course Ou                                                                               |                      | Bloom's Taxonomy   |                        |               |  |  |  |  |
|                                                                                                                                                                                                                                                                                 | Course Or                                                                               | iteonic (s)          |                    | Level                  | Descriptor    |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                             | Understand the current energy conservation                                              | ergy scenario and in | nportance of       | 2                      | Understanding |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                             | Impart knowledge in the dits various forms                                              | omain of Basics of   | Energy and         | 3                      | Applying      |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                             | Understand the concepts o                                                               | f energy manageme    | ent.               | 2                      | Understanding |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                             | Bring out Energy Conserva<br>opportunities across differed<br>innovative business model | ent user segments u  |                    | 4                      | Analyzing     |  |  |  |  |

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|------|------|
| CO1 | 3   | 2   | 1   | -   | 2   | 1   | 1   | 1   | 1   | 1        | 1        | 2        | 1    | 2    |
| CO2 | 3   | 2   | 1   | -   | 2   | 2   | 1   | 2   | 1   | 1        | 1        | 2        | 1    | 2    |
| CO3 | 3   | 2   | 1   | -   | 2   | 1   | 1   | 1   | 1   | 1        | 1        | 2        | 2    | 2    |
| CO4 | 3   | 2   | 1   | -   | 2   | 2   | 1   | 2   | 1   | 1        | 2        | 2        | 1    | 2    |
|                                                                                   | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |     |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| UNIT-I                                                                            | ENERGY SCENARIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.       | СО  |
|                                                                                   | Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, energy sector reforms, energy security, energy conservation and its importance, Energy Conservation Act-2001 and its features.                                                                                                                                                                                        | -          | CO1 |
| UNIT-II                                                                           | BASICS OF ENERGY AND ITS VARIOUS FORMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs.       | СО  |
|                                                                                   | Electricity tariff, load management and maximum demand control, power<br>factor improvement, Thermal Basics-fuels, temperature & pressure, heat<br>capacity, sensible and latent heat, evaporation, condensation, steam,<br>moist air and humidity & heat transfer, units and conversion.                                                                                                                                                                                                                                 | -          | CO2 |
| UNIT-III                                                                          | ENERGY MANAGEMENT & AUDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.       | CO  |
|                                                                                   | Definition, energy audit, need, types of energy audit. Energy<br>management (audit) approach and understanding energy costs,<br>benchmarking, energy performance, maximizing system efficiencies,<br>fuel & energy substitution, energy audit instruments. Material and<br>Energy balance: methods for preparing process flow.                                                                                                                                                                                            | -          | CO3 |
| UNIT-IV                                                                           | ENERGY EFFICIENCY IN INDUSTRIAL SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.       | CO  |
|                                                                                   | Compressed Air System and Cooling Tower: Types, efficiency, efficient<br>compressor operation, components, capacity assessment, leakage test,<br>factors affecting the performance and saving opportunities in HVAC, Fans<br>and blowers: Types, performance evaluation, efficient system operation,<br>flow control strategies and conservation opportunities. Pumps and<br>Pumping System: Types, performance evaluation, efficient system<br>operation, flow control strategies and energy conservation opportunities. | -          | CO4 |
| Auditors Book<br>[T2] Guide bo<br>Auditors Book<br>[T3] S. C. Tri<br>[T4] Success | ooks for National Certification Examination for Energy Manager / Energy<br>x-1, General Aspects (available online)<br>books for National Certification Examination for Energy Manager / Energy<br>x-3, Electrical Utilities (available online)<br>pathy, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199<br>stories of Energy Conservation by BEE, New Delhi ( <u>www.bee-india.org</u> )                                                                                                           | 1.         |     |
| Reference B                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ont Dross  | Inc |
| 007)<br>[R2] Sumper 1<br>John Wiley 2<br>[R3] Frank K                             | reith: Handbook on Energy Efficiency and Renewable Energy (CRC Press, 20<br>Polimeros: Energy Cogeneration Handbook (Industrial Press, Inc., New York,                                                                                                                                                                                                                                                                                                                                                                    | applicatio |     |
| Websites:<br>[E1] Nationa<br>[E2] Bureau                                          | Productivity Council( <u>http://www.npcindia.gov.in</u> )<br>of Energy Efficiency ( <u>https://www.beeindia.gov.in</u> )<br>Im Conservation Research Association ( <u>https://www.pcra.org</u> )                                                                                                                                                                                                                                                                                                                          |            |     |



# EE312: POWER SYSTEM OPERATION AND CONTROL

| Teaching Scheme        | Examination Scheme              |                 |
|------------------------|---------------------------------|-----------------|
| Lectures: 04 Hrs./Week | Continuous Internal Assessment: | 20 Marks        |
| Tutorial: Hr./Week     | In-Sem Exam:                    | <b>30 Marks</b> |
|                        | End-Sem Exam:                   | 50 Marks        |
| Credits: 04            | Total:                          | 100 Marks       |

### **Prerequisite Course:**

1. Basics of Power System

#### **Course Objectives**

- 1) To understand formulation of economic load dispatch tasks and solve it using optimization techniques
- 2) To develop ability to analyze and use various methods to improve stability of power systems
- 3) To illustrate the automatic frequency and voltage control strategies for single and two area case and analyze the effects, knowing the necessity of generation control.
- 4) To illustrate various ways of interchange of power between interconnected utilities and define reliability aspects at all stages of power system
- 5) To understand the need for generation and control of reactive power
- 6) To describe the need of computer control in operating power system.

#### **Course Outcomes (COs):**

|     | Course Outcome (s)                                                                                                                                                 | Bloom | 's Taxonomy   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
|     | Course Outcome (s)                                                                                                                                                 | Level | Descriptor    |
| CO1 | Analyze the control actions to be implemented on the system to meet the minute-to-minute variation of system demand                                                | 4     | Analyzing     |
| CO2 | Suggest the appropriate method of reactive power generation and control                                                                                            | 3     | Applying      |
| CO3 | Select the appropriate device of FACTS Technology in power System                                                                                                  | 3     | Applying      |
| CO4 | Analyze the generation-load balance in real time operation and its<br>effect on frequency and develop automatic control strategies with<br>mathematical relations. | 5     | Evaluating    |
| CO5 | Formulate objective functions for optimization tasks such as unit<br>commitment and economic load dispatch and get solution using<br>computational techniques.     | 5     | Evaluating    |
| CO6 | Gain knowledge on the need of real time system functions.                                                                                                          | 2     | Understanding |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 3    | 3    | 3    |
| CO2    | 3                                                                                        | 3   | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 2    | 3    |
| CO3    | 3                                                                                        | 2   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |
| CO4    | 3                                                                                        | 3   | 3   | 3   | 2   | 1   | 1   | 1   | 1   | 2    | 1    | 2    | 3    | 3    |
| CO5    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 2    | 1    | 2    | 3    | 3    |
| CO6    | 3                                                                                        | 3   | 3   | 2   | 3   | 2   | 1   | 1   | 1   | 2    | 1    | 2    | 3    | 3    |

|                                                         | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
| UNIT-I                                                  | POWER SYSTEM STABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.       | COs     |
|                                                         | Introduction, dynamics of synchronous machines, power angle<br>equation, Simple system, steady state stability, transient stability, equal<br>area criterion (sudden change in mechanical input, effect of clearing<br>time on stability, Sudden short circuit on one of parallel lines), point-<br>by-by point of swing equation, Multi-machine Stability.                                                                                                                                                                                                                                                                                                                                                                                                              | 07         | CO1     |
| UNIT-II                                                 | REACTIVE POWER MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.       | COs     |
|                                                         | Necessity of reactive power control, reactive power generation by a<br>synchronous machine, effect of excitation, loading capability curve of<br>a generator, compensation in power system: series and shunt<br>compensation using capacitors and reactors, Problems with Series<br>Compensation, synchronous condenser.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07         | CO2     |
| UNIT-III                                                | FACTS TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs.       | COs     |
|                                                         | Problems of AC transmission system, evolution of FACTs technology,<br>Working principle, circuit diagram, VI characteristics, applications,<br>advantages and limitations of SVC, TCSC, STATCOM and UPFC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06         | CO3     |
| UNIT-IV                                                 | AUTOMATIC GENERATION AND VOLTAGE CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.       | COs     |
|                                                         | Concept of AGC, complete block diagram representation of load-<br>frequency control of an isolated power system, steady state and dynamic<br>response, control area concept, two area load frequency control.<br>Schematic and block diagram of alternator voltage regulator scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06         | CO4     |
| UNIT-V                                                  | ECONOMIC LOAD DISPATCH AND UNIT COMMITMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.       | COs     |
|                                                         | <ul> <li>A. Economic load dispatch: Introduction, revision of cost curve of thermal and hydro-power plant, plant scheduling method, equal incremental cost method, method of Lagrange multiplier (neglecting transmission losses), Bmn coefficient, economic scheduling of thermal plant considering effect of transmission losses, penalty factor, procedure of load dispatch at state level load dispatch center, Regional Load Dispatch Center, numerical on penalty factor, exact coordination equation.</li> <li>B. Unit commitment: Concept of unit commitment, constraints on unit commitment – spinning reserve, thermal and hydro constraints, methods of unit commitment – priority list and dynamic programming, Numerical on priority list method</li> </ul> | 08         | CO5     |
| UNIT-VI                                                 | COMPUTER CONTROL OF POWER SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs.       | COs     |
|                                                         | Need of computer control of power systems, Energy management<br>system (EMS), – Supervisory Control and Data Acquisition (SCADA)<br>– Security Analysis and control – various operating states, power system<br>security-security & contingency analysis (Descriptive Treatment only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06         | CO6     |
| Text Books                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 D      | TT 11 / |
| ndia.<br>[T2] J. Nagra<br>Publishing (<br>[T3] P. S. R. | Chakrabarti, Sunita Halder, "Power System Analysis Operation and Contr<br>ath, D. P. Kothari, "Modern Power System Analysis", 4th Edition, Tata M<br>Co. Ltd.,<br>Murthy, "Operation & Control in Power System", B. S. Publication, 2008<br>Wood, Bruce F. Wollenberg "Power Generation, Operation, and Control"                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cGraw Hill |         |

Edition.

[T5] P. Kundur, "Power System Stability and Control", Tata McGraw Hill Publishing Co. Ltd.

### **References:**

[R1] N.V.Ramana, Power system operation and control, Pearson Editions

[R2] S. Sreenivasan, G. Sivanagaraju, Power System Operation and Control, Pearson Editions

[R3] Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTs" IEEE Press.

[R4] Olle I. Elgerd, "Electrical Energy System Theory", 2nd Edition, Tata McGraw Hill. Publishing Co. Ltd.

### **E-references:-**

[E1] https://nptel.ac.in/courses/108101040

[E2] https://nptel.ac.in/courses/108104052

[E3] <u>https://nptel.ac.in/courses/108105104</u>

[E4] https://freevideolectures.com/course/2354/power-systems-operation-and-control

|                                                                                                                                                                                                |        | E        | E313   | : FE     | EDB               | ACI     | K CO    | NTF     | ROL      | SYS     | TEM      | <b>IS</b> |               |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|----------|-------------------|---------|---------|---------|----------|---------|----------|-----------|---------------|--------|--|
| Teach                                                                                                                                                                                          | ning S | cheme    | )      |          |                   | E       | xamin   | ation   | Schen    | ıe      |          |           |               |        |  |
|                                                                                                                                                                                                |        |          | Week   |          |                   | C       | Continu | uous A  | ssessn   | nent:   |          |           | 20 N          | larks  |  |
| Tutor                                                                                                                                                                                          | ial: - | - Hrs./  | Week   |          |                   | I       | n-Sem   | Exam    | ı:       |         |          |           | <b>30</b> N   | larks  |  |
|                                                                                                                                                                                                |        |          |        |          |                   | E       | nd-Se   | m Exa   | m:       |         |          |           | 50 N          | larks  |  |
|                                                                                                                                                                                                | its: 0 |          |        |          |                   | Τ       | 'otal:  |         |          |         |          |           | 100 M         | larks  |  |
|                                                                                                                                                                                                | -      | ite Cou  |        |          |                   |         |         |         |          |         |          |           |               |        |  |
|                                                                                                                                                                                                | ~      |          |        | mather   | natics,           | signals | & syst  | ems, ci | rcuit ar | nalysis |          |           |               |        |  |
|                                                                                                                                                                                                |        | jective  |        |          |                   |         |         | 1.0     |          |         |          |           |               |        |  |
| 1. To introduce different types of system and identify a set of algebraic equations to represent<br>and model a complicated system into a more simplified form to interpret different physical |        |          |        |          |                   |         |         |         |          |         |          |           |               |        |  |
|                                                                                                                                                                                                |        |          |        |          | terms (           |         |         |         |          |         |          |           |               |        |  |
|                                                                                                                                                                                                |        | for ana  | -      | 1115 111 |                   |         | uncar s | ystem   |          | Siluci  | equiva   |           | cuicai        | L      |  |
|                                                                                                                                                                                                |        |          | •      | ain an   | d frequ           | encv d  | lomain  | analv   | sis to r | redict  | the per  | rforma    | nce           |        |  |
|                                                                                                                                                                                                | -      | •        |        |          | or stand          | •       |         | •       | -        |         | P •      |           |               |        |  |
|                                                                                                                                                                                                |        |          |        |          | f analy           |         |         |         |          | o expla | in the   | nature    | of stat       | oility |  |
|                                                                                                                                                                                                | the sy |          |        | • •      |                   |         | 1       |         |          | T       |          |           |               | 2      |  |
| Cour                                                                                                                                                                                           | se Ou  | tcome    | s (COs | s):      |                   |         |         |         |          |         |          |           |               |        |  |
| After                                                                                                                                                                                          | succe  | essful c | comple | etion o  | f the c           | ourse,  | stude   | nt will | be ab    | le to   |          |           |               |        |  |
|                                                                                                                                                                                                |        |          | C      | urse (   | Outcor            | ne (s)  |         |         |          |         |          |           | Taxonomy      |        |  |
|                                                                                                                                                                                                |        |          |        |          |                   |         |         |         |          |         | Level    |           | escrip        |        |  |
|                                                                                                                                                                                                |        |          |        |          | types             |         |         |         |          |         | 2        |           | Categorize    |        |  |
| CO1                                                                                                                                                                                            |        |          |        |          | Fransfo           |         |         | ne the  | Transf   | er      | 3        | App       | ly Exa        | mine   |  |
|                                                                                                                                                                                                |        |          |        |          | echanic           |         |         |         |          |         | 4<br>5   | -         |               | 1      |  |
| 600                                                                                                                                                                                            |        |          |        |          | ansfer            |         |         |         |          |         |          | Eva       | luate A       | pply   |  |
| CO2                                                                                                                                                                                            |        |          |        |          | s using           |         |         |         | eduction | on      | 3        |           |               |        |  |
|                                                                                                                                                                                                |        |          |        |          | s of sig          |         |         |         |          | 1       | 6        | Fam       | nulate        |        |  |
| CO3                                                                                                                                                                                            |        |          |        |          | pes of a          |         |         |         | nain ai  | na      | 6        |           |               |        |  |
|                                                                                                                                                                                                |        |          |        |          | ability<br>f syst |         |         |         | stahili  | ty      | 4 3      | Perf      | lysis<br>form |        |  |
| CO4                                                                                                                                                                                            |        | lysis.   | 001 10 | cus 0    | i syst            | ciiis c | x per   | 101 111 | SIAUIII  | Ly      | 5        |           | om            |        |  |
|                                                                                                                                                                                                | Dor    |          | ration | and st   | tability          | analy   | vsis of | syster  | ns iisii | nσ      | 3        | Den       | nonstra       | tion   |  |
| C05                                                                                                                                                                                            |        |          | ar &Ny |          | •                 | anary   | 515 01  | 5,5001  | 10 401   |         | 4        |           | lysis         |        |  |
|                                                                                                                                                                                                |        |          |        |          | vrite th          | e state | -space  | repres  | sentatio | on      | 4        |           | mine          |        |  |
| CO6                                                                                                                                                                                            |        |          |        |          | <b>m</b> inte     |         | -       | -       |          |         | 3        | Perf      |               |        |  |
|                                                                                                                                                                                                |        | •        | -      | -        | tion re           |         |         |         |          |         |          |           |               |        |  |
| Mappi                                                                                                                                                                                          | ing of | Course   | Outco  | mes to   | Progra            | am Ou   | tcomes  | (POs)   | & Pro    | gram S  | Specific | e Outco   | omes (I       | PSOs): |  |
|                                                                                                                                                                                                | PO1    | PO2      | PO3    | PO4      | PO5               | PO6     | PO7     | PO8     | PO9      | PO10    | PO11     | PO12      | PSO1          | PSO2   |  |
| CO1                                                                                                                                                                                            | 3      | 3        | -      | -        | -                 | -       | -       | -       | -        | -       | -        | -         | 3             | -      |  |
| CO2                                                                                                                                                                                            | -      | -        | 3      | -        | -                 | -       | -       | -       | -        | -       | -        | -         | -             | 2      |  |
| CO3                                                                                                                                                                                            | -      | -        | 3      | -        | -                 | I       | -       | -       | -        | -       | -        | -         | _             | -      |  |
| CO4                                                                                                                                                                                            | -      | 2        | 3      | -        | -                 | -       | -       | -       | -        | -       | -        | -         | -             | -      |  |

| Mapp | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|      | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO5  | -                                                                                        | 3   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO6  | _                                                                                        | 2   | -   | -   | 2   | -   | -   | -   | _   | -    | -    | -    | -    | -    |

|              | Course Contents                                                                                                                                                                                                                                                           |      |     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I       | Modelling of Physical Systems                                                                                                                                                                                                                                             | Hrs. | COs |
|              | Laplace Transform review, The Transfer function, Electric network<br>Transfer Function, Translational mechanical system transfer function,<br>Rotational mechanical system transfer function, Electro-mechanical<br>system transfer function, Electrical circuit analogy. | 6hrs | CO1 |
| UNIT-<br>II  | Reduction of Multiple Systems                                                                                                                                                                                                                                             | Hrs. | CO  |
|              | Block diagrams, Analysis and design of feedback system, Signal flow<br>graphs,<br>Mason's rule, Signal flow graphs of state equations.                                                                                                                                    | 6hrs | CO2 |
| UNIT-<br>III | Time Response and Stability of system                                                                                                                                                                                                                                     | Hrs. | CO  |
|              | Time Response Analysis Standard test signals. Poles, Zeros & System<br>response, First Order System, Second Order System.<br>Stability<br>Concept of Stability. Routh-Hurwitz Criteria and its special cases<br>(additional examples). Relative Stability analysis.       | 6hrs | CO3 |
| UNIT-<br>IV  | Root Locus Techniques                                                                                                                                                                                                                                                     | Hrs. | СО  |
|              | Introduction, Root locus plots, Summary of general rules for<br>constructing Root-Loci,Root locus analysis for control systems, Root<br>loci for systems with transport lag                                                                                               | 6hrs | CO4 |
| UNIT-<br>V   | Frequency Response Techniques                                                                                                                                                                                                                                             | Hrs. | CO  |
|              | Frequency-response analysis Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response.                                   | 6hrs | CO5 |
| UNIT-<br>VI  | Introduction to State Space Modelling                                                                                                                                                                                                                                     | Hrs. | CO  |
|              | The general state-space representation, Applying the state-space representation, Converting the transfer function to state-space, Converting from state-space to transfer function.                                                                                       | 6hrs | CO6 |
| Text Boo     | ks:                                                                                                                                                                                                                                                                       |      |     |
|              | atsuhiko Ogata, "Modern control system engineering", Prentice Hall, 201<br>lise N. S. "Control Systems Engineering", John Wiley & Sons, Incorpora                                                                                                                         |      | 11  |

### **References:**

[R1] I.J. Nagrath, M. Gopal, "Control System Engineering", New Age International Publishers, 5th edition, 2007

[R2] B. C. Kuo, "Automatic Control System", Prentice Hall, 1995

[R3] M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.

**E-References** 

[1] <u>https://nptel.ac.in/courses/107/106/107106081/</u>

# **EE314: ELECTRICAL MACHINE DESIGN**

| Teaching Scheme        | <b>Examination Scheme</b> |                 |
|------------------------|---------------------------|-----------------|
| Lectures: 03 Hrs./Week | Continuous Assessment:    | 20 Marks        |
| Tutorial: Hrs./Week    | In-Sem Exam:              | <b>30 Marks</b> |
|                        | End-Sem Exam:             | 50 Marks        |
| Credits: 03            | Total:                    | 100 Marks       |

### Credits: 03

### **Prerequisite Course:**

- 1. Knowledge of various materials used in electrical machines.
- 2. Knowledge of types, construction and working of transformer.
- 3. Knowledge of types, construction and working of three phase induction motor.

### **Course Objectives**

- 1. To make student understand basic of Electrical Machine design.
- 2. To design a transformer.
- 3. To understand the determination of parameters of the transformer.
- 4. To design Induction motor.
- 5. To understand the determination of parameters of an Induction motor.
- 6. To understand computer aided design of electrical machines

### **Course Outcomes (COs):**

|     | Course Outcome (s)                                                                                                                   | <b>Bloom's Taxonomy</b> |               |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--|
|     |                                                                                                                                      | Level                   | Descriptor    |  |
| CO1 | Select proper commercial materials, their properties and<br>selection criterions, IS standards used in electrical machine<br>design. | 2                       | Understanding |  |
| CO2 | Calculate main dimensions and Design of single phase and three phase transformer.                                                    | 6                       | Creating      |  |
| CO3 | Determine the parameters of transformer.                                                                                             | 5                       | Evaluating    |  |
| CO4 | Calculate main dimensions and design of three phase<br>Induction motor.                                                              | 6                       | Creating      |  |
| CO5 | Determine parameters of three phase Induction motor.                                                                                 | 5                       | Evaluating    |  |
| CO6 | Apply computer aided optimization techniques for design of electrical machines                                                       | 3                       | Applying      |  |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | 3   | 3   | 2   | 2   | 1   | 1   | 1   | 1   | I    | 1    | 1    | 1    | 3    |
| CO2    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | -    | 2    | 1    | 1    | 1    |
| CO3    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | -    | 2    | 1    | 1    | 1    |
| CO4    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 2   | 2   | I    | 2    | 1    | 1    | 1    |
| CO5    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | -    | 2    | 1    | 1    | 1    |
| CO6    | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 2   | 2   | -    | 2    | 1    | 3    | 1    |

|                   | Course Contents                                                                                                                                                                                                                                                                                    |       |      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| UNIT I:           | INTRODUCTION                                                                                                                                                                                                                                                                                       | Hrs.  | CO   |
|                   | Transformers and three phase induction motors - types, specifications, constructional features, conducting, magnetic and insulating materials, heating and cooling in electrical machines.                                                                                                         | 6     | CO1  |
| UNIT II:          | TRANSFORMER DESIGN (PART I)                                                                                                                                                                                                                                                                        | Hrs.  | CO   |
|                   | Output equation with usual notations, optimum design of transformer<br>for minimum cost and loss. Design of main dimensions, core, yoke and<br>windings of transformer. Methods of cooling and tank design                                                                                         | 6     | CO2  |
| UNIT III:         | TRANSFORMER DESIGN (PART II)                                                                                                                                                                                                                                                                       | Hrs.  | CO   |
|                   | Estimation of no-load current, losses, efficiency and regulation of<br>transformer, Mechanical forces developed under short circuit<br>conditions, measures to overcome this effect. Introduction to Computer<br>aided design of transformer, generalized flow chart for design of<br>transformer. | 6     | CO3  |
| <b>UNIT IV:</b>   | INDUCTION MOTOR DESIGN (PART I)                                                                                                                                                                                                                                                                    | Hrs.  | CO   |
|                   | Output equation, specific electrical and magnetic loading, main<br>dimensions, selection of slots, stator design, stator slots, turns per<br>phase, selection of air gap, squirrel cage and wound rotor design.                                                                                    | 6     | CO4  |
| UNIT V:           | INDUCTION MOTOR DESIGN (PART II)                                                                                                                                                                                                                                                                   | Hrs.  | CO   |
|                   | Calculation of magnetic circuit, MMF calculations, stator teeth, stator core, effect of saturation, magnetizing current, no load current and its core loss component, performance calculations - losses, efficiency, temperature rise, maximum torque from circle diagram.                         | 6     | CO5  |
| <b>UNIT VI:</b>   | COMPUTER AIDED DESIGN (CAD) OF ELECTRICAL                                                                                                                                                                                                                                                          | Hrs.  | CO   |
|                   | MACHINES                                                                                                                                                                                                                                                                                           | 1115. | CO   |
|                   | Limitations and assumptions in traditional designs, need of CAD,<br>analysis, synthesis and hybrid methods, design optimization methods,<br>variables, constraints and objective function, problem formulation.                                                                                    | 6     | CO6  |
| <b>Text Books</b> |                                                                                                                                                                                                                                                                                                    |       |      |
| Londo             | bay – Theory and Performance and Design of A.C. Machines, 3rd Edition,<br>on.<br>whney – A Course in Electrical Machine Design, 10th Edition, - Dhan                                                                                                                                               |       |      |
|                   | ons New Delhi.                                                                                                                                                                                                                                                                                     |       |      |
| [T3] K. G. U      | Jpadhyay- Design of Electrical Machines, New age publication<br>Agarwal – Principles of Electrical Machine Design, S. K.Katariya and sor                                                                                                                                                           | ıs.   |      |
|                   | t Dasgupta – Design of Transformers – TMH                                                                                                                                                                                                                                                          |       |      |
| References        |                                                                                                                                                                                                                                                                                                    |       |      |
| Satya             | arang , A Text Book of Electrical Engineering Drawings, Reprint Editior<br>Prakashan, New Delhi.<br>Imugasundaram, G. Gangadharan, R. Palani, - Electrical Machine Desigr                                                                                                                          |       |      |
| 3rd Ed            | lition, 3rd Reprint 1988 - Wiely Eastern Ltd., - New Delhi<br>Murti, "Computer Aided Design for Electrical Machines", B.S. Publicat                                                                                                                                                                |       | ,on, |
|                   | Heavy Electricals Limited, Transformers - TMH.                                                                                                                                                                                                                                                     |       |      |
| E-Referenc        |                                                                                                                                                                                                                                                                                                    |       |      |
| [1] <u>https:</u> | ://nptel.ac.in/courses/108/106/108106023/#                                                                                                                                                                                                                                                         |       |      |

# **EE315A: ELECTRICAL DRIVES**

| Teaching Scheme        | <b>Examination Scheme</b> |                 |
|------------------------|---------------------------|-----------------|
| Lectures: 03 Hrs./Week | Continuous Assessment:    | 20 Marks        |
| Tutorial: Hr./Week     | In-Sem Exam:              | <b>30 Marks</b> |
|                        | End-Sem Exam:             | 50 Marks        |
| Credits: 03            | Total:                    | 100 Marks       |

### **Prerequisite Course:**

- 1. Construction, working and characteristic of different electrical motors and soft starting methods.
- 2. Power Electronic Applications such as converter, inverter, chopper etc.
- 3. Basic concept of control system.

### **Course Objectives**

- 1. To understand motor load dynamics.
- 2. To analyze the operation of the converter fed and chopper fed dc drives.
- 3. To elaborate braking methods of D.C. and Induction motor drive.
- 4. To explain vector control of induction motor.
- 5. To differentiate synchronous and BLDC motor drive.
- 6. To identify classes and duty of motor.
  - To describe the modes of operation of drive in various applications.

### **Course Outcomes (COs):**

|     | Course Outcome (s)                                                                  | Bloom' | s Taxonomy    |
|-----|-------------------------------------------------------------------------------------|--------|---------------|
|     |                                                                                     | Level  | Descriptor    |
| CO1 | Explain motor load dynamics and multi quadrant operation of drives                  | 2      | Understanding |
| CO2 | Analyze operation of converter fed and chopper fed DC drives.                       | 4      | Analyzing     |
| CO3 | Describe braking methods of D.C. and induction motor drive.                         | 2      | Understanding |
| CO4 | Explain vector control for induction motor drives                                   | 2      | Understanding |
| CO5 | Describe synchronous motor drive.                                                   | 2      | Understanding |
| CO6 | Identify classes and duty cycles of motor and applications of drives in industries. | 4      | Analyzing     |

| Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                      | 2   | 2   | 1   | 2   | 2   | 1   | 2   | 1   | 1   |      | 1    | 2    | 3    | 1    |
| CO2                                                                                      | 2   | 1   | 2   | 1   | 2   |     | 1   |     | 1   | 1    | 2    | 3    | 2    |      |
| CO3                                                                                      | 3   | 2   | 3   |     | 1   |     | 1   |     |     | 1    | 3    | 3    | 2    | 2    |
| CO4                                                                                      | 2   |     |     | 2   | 2   | 1   | 1   | 1   | 2   | 1    | 2    | 2    | 2    | 2    |
| CO5                                                                                      | 2   | 2   | 2   | 1   | 1   |     |     | 1   | 1   |      | 2    | 2    | 3    | 2    |
| CO6                                                                                      | 3   | 1   |     |     | 2   |     | 2   |     | 1   | 1    | 1    | 2    | 2    |      |

|                                                                                              | <b>Course Contents</b>                                                                                                                                                                                                                                                                                                                                                                            |                |      |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|
| UNIT-I                                                                                       | <b>Basics Of Electric Drives And Control</b>                                                                                                                                                                                                                                                                                                                                                      | Hrs.           | CO 1 |
|                                                                                              | Definition, Advantages of electrical drives, Components of Electric drive system, Selection Factors, status of Electrical Drives (DC & AC), speed control and drive classifications, close loop control of drives, phase locked loop (PLL) control.                                                                                                                                               | 08<br>Hrs.     | CO 1 |
| UNIT-II                                                                                      | Dynamics Of Electrical Drives                                                                                                                                                                                                                                                                                                                                                                     | Hrs.           | CO   |
|                                                                                              | Motor-Load Dynamics, Speed Torque conventions and multi quadrant<br>operation, Equivalent values of drive parameters. Load Torque Components,<br>Nature and classification of Load Torques, Constant Torque and Constant<br>Power operation of a Drive. Steady state stability, Load equalization.                                                                                                | 08<br>Hrs.     | CO 2 |
| UNIT-III                                                                                     | DC Motor Drives                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.           | CO   |
|                                                                                              | DC motors and their performance starting, transient analysis, speed<br>control, ward Leonard drives, Controlled rectifier fed drives, [full<br>controlled 3 phase rectifier control of dc separately excited motor],<br>multi quadrant operation, Chopper controlled drives Closed loop speed<br>control of DC motor.                                                                             | 08<br>Hrs.     | CO 3 |
| UNIT-IV                                                                                      | Induction Motor Drives                                                                                                                                                                                                                                                                                                                                                                            | Hrs.           | СО   |
|                                                                                              | Induction motor analysis, starting and speed control methods- voltage<br>and frequency control, current control, closed loop control of induction<br>motor drives, rotor resistance control, Slip power recovery – Static<br>Kramer and Scherbius Drive, Single phase induction motor starting,<br>braking and speed control.                                                                     | 06<br>Hrs.     | CO 4 |
| UNIT-V                                                                                       | Synchronous Motor And Brushless Dc Motor Drives                                                                                                                                                                                                                                                                                                                                                   | Hrs.           | CO   |
|                                                                                              | Synchronous motor types, operation with fixed frequency, variable speed drives, PMAC and BLDC motor drives, Stepper motor drives, switch reluctance motor drives.                                                                                                                                                                                                                                 | 06<br>Hrs.     | CO 5 |
| UNIT-VI                                                                                      | Selection of Motor Power Rating                                                                                                                                                                                                                                                                                                                                                                   | Hrs.           | CO   |
|                                                                                              | Thermal model of motor for heating and cooling, classes of motor<br>duty, determination of motor ratings.                                                                                                                                                                                                                                                                                         | 06<br>Hrs.     | CO 6 |
| [T2] N. K.<br>[T3] S. K.<br>[T4] R. Kr<br>[T5] G.K.                                          | Dubey, "Fundamentals of Electric Drives", 2nd Edition, Narosa Publishing F<br>De, P. K. Sen, "Electric Drives", Prentice Hall of India Eastern Economy Ed<br>Pillai, "Analysis of Thyristor Power Conditioned Motors", University Press<br>ishnan, "Electric Motor Drives – Modeling Analysis and Control", PHI India<br>Dubey, "Power Semiconductor controlled drives", PHI publication          | House<br>ition |      |
| Malcolm E<br>Publication<br>[R2] V. Su<br>imprint of<br>[R3] M.D.<br>Austin Hug<br>Newnes, L | Bose, "Modern Power Electronics and AC Drives", Pearson Education<br>Barnes, "Practical Variable Speed Drives and Power Electronics", Elsevier Ne<br>hs<br>brahmanyam, "Electric Drives: Concepts and Application", Tata Mc-Graw H<br>Elsevier)<br>Singh and Khanchandani "Power Electronics", Tata Mc-Graw Hill<br>ges, "Electrical motor and drives: Fundamental, types and applications", Heir | ill (An        |      |

|                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                           | <b>IZA</b> I                                                                            | ION                                                                |                                                                          | ELEC                                                             | <b>TRI</b>                                            | CAL                  | ENE                               | RG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                   |                                             |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|----------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| Teach                                  | ing Scheme                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |                                                                                           |                                                                                         |                                                                    | ]                                                                        | Examin                                                           | ation S                                               | Scheme               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                             |  |  |  |  |
| Lectu                                  | res: 03 Hrs                                                                                                                                                                                                                                                                                                                                                                      | ./Week                                                                                          |                                                                                           |                                                                                         |                                                                    |                                                                          | Continu                                                          | ious As                                               | sessme               | nt:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                             |  |  |  |  |
| Tutori                                 | ial: Hr/W                                                                                                                                                                                                                                                                                                                                                                        | 'eek                                                                                            |                                                                                           |                                                                                         |                                                                    | ]                                                                        | In-Sem                                                           | Exam:                                                 |                      |                                   | 3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks                                                               | 5                                           |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                           |                                                                                         |                                                                    | ]                                                                        | End-Sei                                                          | m Exai                                                | n:                   |                                   | 5(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks                                                               | 5                                           |  |  |  |  |
| Credit                                 | ts: 03                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                           |                                                                                         |                                                                    | , r                                                                      | Total:                                                           |                                                       |                      |                                   | 1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Marl                                                              | KS                                          |  |  |  |  |
| 1.<br>2.<br>3.<br>4.                   | equisite Cou<br>Basic Electr<br>Effects of el<br>Chemical re<br>Control circ<br>Characterist                                                                                                                                                                                                                                                                                     | cal and I<br>ectric cur<br>actions in<br>actions in                                             | rrent<br>1 electrol<br>1 basics,                                                          | lyte<br>awarene                                                                         | ess abou                                                           |                                                                          |                                                                  |                                                       |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing                                                                 |                                             |  |  |  |  |
|                                        | e Objective                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                           |                                                                                         |                                                                    |                                                                          |                                                                  |                                                       |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                             |  |  |  |  |
| 4.<br>5.<br><b>Cours</b>               | utilization of electrical energy.<br>Develop ability amongst the students to design -heating element for resistance furnaces and<br>design- illumination schemes. To develop ability amongst the students to analyze the<br>performance of arc furnaces, electric traction, different sources of light, illumination schemes.<br>Know how about Refrigeration, Air Conditioning. |                                                                                                 |                                                                                           |                                                                                         |                                                                    |                                                                          |                                                                  |                                                       | es.                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                             |  |  |  |  |
| Allers                                 | successful co                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 | n of the                                                                                  | course.                                                                                 | , studen                                                           | nt will ł                                                                | be able t                                                        | 0                                                     |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                             |  |  |  |  |
| Aners                                  | successful co                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |                                                                                           |                                                                                         |                                                                    |                                                                          | be able t                                                        | 0                                                     |                      | B                                 | loom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tavan                                                               |                                             |  |  |  |  |
| Alter s                                | successful co                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |                                                                                           | course,<br>se Outc                                                                      |                                                                    |                                                                          | be able t                                                        | 0                                                     |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a Taxon                                                             | omy                                         |  |  |  |  |
| CO1                                    | Get knowl                                                                                                                                                                                                                                                                                                                                                                        | mpletion                                                                                        | Cours                                                                                     | se Outc                                                                                 | come (s                                                            | )                                                                        |                                                                  |                                                       |                      | <b>B</b><br><b>Lev</b><br>2       | vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>s Taxon</mark><br>Descri<br>Jndersta                          | omy<br>ptor                                 |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                  | mpletion<br>edge of <u>p</u><br>s.<br>l electro                                                 | Cours<br>orinciple<br>chemica                                                             | se Outc                                                                                 | come (s                                                            | )<br>ating, v                                                            | welding                                                          | and its                                               |                      | Lev                               | v <mark>el</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Descri                                                              | omy<br>ptor<br>nding                        |  |  |  |  |
| CO1                                    | Get knowledge application                                                                                                                                                                                                                                                                                                                                                        | mpletion<br>edge of <u>r</u><br>s.<br>l electro<br>n, air co                                    | Cours<br>principle<br>chemica<br>ondition                                                 | se Outc<br>e of elec<br>al proce<br>ing                                                 | ctric he                                                           | )<br>eating, v                                                           | welding                                                          | and its                                               |                      | <b>Lev</b> 2                      | 7 <b>el</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Descri</b><br>Indersta                                           | omy<br>ptor<br>nding<br>nding               |  |  |  |  |
| CO1<br>CO2                             | Get knowl<br>application<br>Understand<br>refrigeration                                                                                                                                                                                                                                                                                                                          | mpletion<br>edge of <u>p</u><br>s.<br>l electro<br><u>n, air co</u><br>erent ill                | Cours<br>principle<br>chemica<br>ondition<br>uminati                                      | se Outc<br>e of elec<br>al proce<br>ing<br>ion sche                                     | ctric he<br>ess, elec<br>emes to                                   | )<br>ating, v<br>etrical c<br>save en                                    | welding<br>circuits t                                            | and its<br>used in                                    |                      | 2<br>2<br>2                       | 7 <mark>el</mark> U<br>U<br>U<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Descri<br>Indersta<br>Indersta                                      | omy<br>ptor<br>nding<br>nding               |  |  |  |  |
| CO1<br>CO2<br>CO3                      | Get knowl<br>application<br>Understand<br>refrigeratio<br>Design dif                                                                                                                                                                                                                                                                                                             | mpletion<br>edge of p<br>s.<br>I electro<br>n, air co<br>erent ill<br>I various                 | Course<br>principle<br>chemica<br>ondition<br>uminati                                     | se Outco<br>e of elect<br>al proce<br>ing<br>ion sche<br>ments ar                       | ctric he<br>ess, elec<br>emes to<br>nd acce                        | )<br>eating, v<br>etrical c<br>save en<br>ssories                        | welding<br>circuits<br>nergy<br>of tract                         | and its<br>used in<br>ion sys                         | tem                  | 2<br>2<br>2<br>3                  | Zel         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Descri<br>Jndersta<br>Jndersta                                      | omy<br>ptor<br>nding<br>nding<br>g<br>nding |  |  |  |  |
| CO1<br>CO2<br>CO3<br>CO4               | Get knowl<br>application<br>Understand<br>refrigeration<br>Design diff                                                                                                                                                                                                                                                                                                           | edge of r<br>s.<br>l electro<br>r, air co<br>rerent ill<br>l various<br>ractive e<br>ectric bra | Course<br>principle<br>chemica<br>ondition<br>uminati<br>s equipm<br>ffort, po            | e of elect<br>al proce<br>ing<br>ion sche<br>ments ar                                   | ctric he<br>ess, elec<br>emes to<br>nd acces                       | )<br>eating, v<br>etrical c<br>save en<br>ssories<br>ion and             | welding<br>circuits<br>nergy<br>of tract                         | and its<br>used in<br>ion sys<br>y of tra             | tem                  | Lev<br>2<br>2<br>3<br>2           | Zel         L           U         U           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Descrij<br>Indersta<br>Indersta<br>Applying<br>Indersta             | omy<br>ptor<br>nding<br>nding<br>g<br>nding |  |  |  |  |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | Get knowl<br>application<br>Understand<br>refrigeration<br>Design diff<br>Understand<br>Calculate t<br>Analyse el<br>lighting sy                                                                                                                                                                                                                                                 | edge of r<br>s.<br>I electro<br>rerent ill<br>I various<br>ractive e<br>ectric brastem          | Course<br>principle<br>chemica<br>ondition<br>uminati<br>s equipn<br>ffort, po<br>aking m | se Outc<br>e of elec<br>al proce<br>ing<br>ion sche<br>nents ar<br>ower, ac<br>nethods, | ctric he<br>ess, elec<br>emes to<br>nd acces<br>celeration, contro | )<br>eating, v<br>etrical c<br>save en<br>ssories<br>ion and<br>i of tra | welding<br>circuits<br>nergy<br>of tract<br>l velocit<br>ction m | and its<br>used in<br>ion sys<br>y of tra<br>otors, t | tem<br>ction<br>rain | Lev<br>2<br>2<br>3<br>2<br>3<br>4 | rel         U           U         U           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I | Descrij<br>Jndersta<br>Jndersta<br>Applying<br>Jndersta<br>Applying | omy<br>ptor<br>nding<br>nding<br>g<br>nding |  |  |  |  |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | Get knowl<br>application<br>Understand<br>refrigeration<br>Design diff<br>Understand<br>Calculate t<br>Analyse el                                                                                                                                                                                                                                                                | edge of r<br>s.<br>I electro<br>rerent ill<br>I various<br>ractive e<br>ectric brastem          | Course<br>principle<br>chemica<br>ondition<br>uminati<br>s equipn<br>ffort, po<br>aking m | se Outc<br>e of elec<br>al proce<br>ing<br>ion sche<br>nents ar<br>ower, ac<br>nethods, | ctric he<br>ess, elec<br>emes to<br>nd acces<br>celeration, contro | )<br>eating, v<br>etrical c<br>save en<br>ssories<br>ion and<br>i of tra | welding<br>circuits<br>nergy<br>of tract<br>l velocit<br>ction m | and its<br>used in<br>ion sys<br>y of tra<br>otors, t | tem<br>ction<br>rain | Lev<br>2<br>2<br>3<br>2<br>3<br>4 | rel         U           U         U           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I | Descrij<br>Jndersta<br>Jndersta<br>Applying<br>Jndersta<br>Applying | omy<br>ptor<br>nding<br>nding<br>g<br>nding |  |  |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 1   | 2   | 1   | 2   | 3   | 2   | 2   | 1   | -    | 1    | 3    | 2    | 1    |
| CO2 | 3   | 2   | 2   | 2   | 2   | 2   | 1   | 1   | 1   | -    | 1    | 3    | 3    | 1    |
| CO3 | 3   | 2   | 3   | 2   | 2   | 2   | 3   | 2   | 1   | -    | 2    | 3    | 3    | 1    |
| CO4 | 3   | 2   | 2   | 2   | 2   | 2   | 1   | -   | 1   | -    | 1    | 3    | 3    | 3    |
| CO5 | 3   | 2   | 2   | 2   | 2   | 2   | 1   | 2   | 1   | -    | 1    | 3    | 3    | 2    |
| CO6 | 3   | 3   | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 1    | 2    | 3    | 2    | 2    |

2020 Pattern

|          | <b>Course Contents</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | ELECTRIC HEATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs. | COs |
|          | <ul> <li>Modes of heat transfer, mathematical expressions</li> <li>Electric heating: Introduction to electric heating, Advantages of electrical heating</li> <li>Heating methods: - Resistance heating – Direct resistance heating, indirect resistance heating, electric ovens, different types of heating element materials, temperature control of resistance furnaces, and design of heating element (Numerical)</li> <li>Applications of resistance heating</li> <li>Induction heating : Principle, core type and coreless induction furnaces, Ajax Wyatt furnace, Numerical on melting furnaces</li> <li>Applications of induction heating</li> <li>Electric arc heating – Direct and indirect arc heating, types of arc furnaces, equivalent circuit of arc furnace, condition for maximum output, power factor at maximum output (Numerical), Heat control in arc furnace, Applications of arc heating</li> <li>Dielectric heating –Principle, choice of voltage and frequency for dielectric heating (Numerical), Applications of dielectric heating</li> <li>Electric Welding -Welding methods –Electric arc welding and resistance welding, Equivalent circuit of arc furnace (Numerical)</li> </ul> | 8    | CO1 |
| UNIT-II  | ELECTROCHEMICAL PROCESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hrs. | CO  |
|          | <ul> <li>Need of electro-deposition. Applications of Faraday's laws in electro-deposition. Factors governing electro-deposition. Objectives of electroplating. Equipments and accessories for electroplating plant, Electroplating on non-conducting materials, Principle of anodizing and its applications</li> <li>Electrical Circuits Used in Refrigeration, Air Conditioning Brief description of vapour compression refrigeration cycle.</li> <li>Description of electrical circuits used in Refrigerator, Air Conditioner</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6    | CO2 |
| UNIT-III | ILLUMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | CO  |
|          | Definitions of luminous flux, solid angle, luminous intensity,<br>illumination, luminous efficacy, depreciation factor, coefficient of<br>utilization, space to height ratio, reflection factor; Laws of<br>illumination.<br>Design of illumination schemes-Factors to be considered for design of<br>illumination scheme, Calculation of illumination at different points,<br>considerations involved in simple design problems for indoor<br>installation, illumination schemes, standard illumination level. Natural<br>day light illumination (brief information)<br>Different sources of light: Incandescent lamp, fluorescent lamp,<br>comparison between them. Incandescent and discharge lamps – their<br>construction and characteristics; mercury vapour lamp, sodium lamp,<br>halogen lamp, compact fluorescent lamp, metal halide lamp, neon<br>lamps, LEDs, LASERs; comparison of all above luminaries.                                                                                                                                                                                                                                                                                            | 6    | CO3 |
| UNIT-IV  | ELECTRIC TRACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | СО  |
|          | Traction systems - Steam engine drive, electric drive, diesel electric drive, types of diesel locomotives, Advantages of electric traction Systems of track electrification: D.C. system, single phase low frequency A.C. system, 3 phase low frequency A.C. systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6    | CO4 |

2020 Pattern

|                          | composite systems – kando systems, single phase A.C. to D.C. system<br>Different accessories for track electrification -overhead wires,<br>conductor rail system, current collector<br>Electric locomotive- Block diagram with description of various<br>equipment and accessories.                                                                                                                          |          |          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|                          | Details of major equipment in traction substation-transformer, circuit                                                                                                                                                                                                                                                                                                                                       |          |          |
| UNIT-V                   | breaker, interrupter TRACTION MECHANICS                                                                                                                                                                                                                                                                                                                                                                      | Hrs.     | СО       |
|                          | Types of services- Urban, Sub-urban, Main line Speed time curves,<br>trapezoidal and quadrilateral speed-time curves, average and schedule<br>speed (Numerical), Tractive effort. Specific energy consumption.<br>Factors affecting specific energy consumption (Numerical),<br>Mechanics of train movement, coefficient of adhesion (Numerical).                                                            | 6        | CO5      |
| UNIT-VI                  | <b>CONTROL OF TRACTION MOTORS AND TRAIN LIGHTING</b>                                                                                                                                                                                                                                                                                                                                                         | Hrs.     | СО       |
|                          | Desirable characteristic of traction motors. Suitability of D.C. series<br>motor, A.C. series motor, 3 phase induction motor and linear<br>induction motor for traction. Control of traction motors -Series-<br>parallel control, Shunt and bridge transition (Numerical), Electrical<br>breaking, Regenerative breaking in traction, Suitability of different<br>motors for braking. Train lighting system. | 6        | CO6      |
| [T2] E. O. Ta<br>Longman | pta, 'Utilization of Electric Power and Electric Traction', S.K. Kataria and<br>ylor 'Utilization of Electrical Energy' – Revised in S.I. Units by V.V.L. Ra                                                                                                                                                                                                                                                 | io, Orie | nt       |
| <b>References:</b>       | dhwa, 'Generation, Distribution and Utilization of Electrical Energy', Eas                                                                                                                                                                                                                                                                                                                                   | tern W1  | ley Ltd. |
| [R1] 'Modern             | Electric Traction' by H. Partab, Dhanpat Rai and Co. (P) Ltd –Delhi al Powers' S. L. Uppal, Khanna Publication                                                                                                                                                                                                                                                                                               |          |          |
| [R3] 'Generat            | ion and Utilization of Electrical Energy' S. Sivanagaraju, M. Balsubba<br>D. Srilatha (Pearson)                                                                                                                                                                                                                                                                                                              |          |          |
| <b>E-Reference</b>       |                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |
| [2] https://ar           | ptel.ac.in/courses/108105060<br>chive.nptel.ac.in/courses/108/105/108105060/<br>ptel.ac.in/courses/108104140                                                                                                                                                                                                                                                                                                 |          |          |

# **EE315C: ELECTROMAGNETIC FIELDS**

|            | ing Sc  |          |                                                       |           |           |           |           | Examin    |          |          |          |                     |              |       |  |  |
|------------|---------|----------|-------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|---------------------|--------------|-------|--|--|
| Lectu      |         | )3 Hrs.  |                                                       |           |           |           |           | Continu   |          |          | ent:     |                     | 0 Marks      |       |  |  |
| Tutor      | ial:    | Hr/We    | ek                                                    |           |           |           | I         | n-Sem     | Exam     | :        |          | 3                   | 0 Marks      | 8     |  |  |
|            |         |          |                                                       |           |           |           | I         | End-Se    | m Exa    | m:       |          | 5                   | 0 Marks      | 6     |  |  |
| Credi      |         |          |                                                       |           |           |           | ]         | Fotal:    |          |          |          | 1                   | 00 Marl      | KS    |  |  |
|            |         | e Cour   |                                                       |           |           |           |           |           |          |          |          |                     |              |       |  |  |
|            |         |          | al and E                                              |           | cs Engi   | neering   |           |           |          |          |          |                     |              |       |  |  |
|            |         |          | hnology                                               |           |           |           |           |           |          |          |          |                     |              |       |  |  |
|            | se Obje |          | etric cur                                             | rent      |           |           |           |           |          |          |          |                     |              |       |  |  |
| Cours      | Ŭ       |          |                                                       |           |           |           |           |           |          |          |          |                     |              |       |  |  |
| 6.         | To un   | derstar  | nd the b                                              | asic lav  | vs of el  | ectrom    | agnetisi  | m.        |          |          |          |                     |              |       |  |  |
| 7.         | To ob   | tain the | electric                                              | and mag   | gnetic fi | elds for  | simple    | configu   | rations  | under st | atic con | ditions             | •            |       |  |  |
| 8.         | To an   | alyse ti | me var                                                | ying ele  | ectric a  | nd mag    | netic fi  | elds.     |          |          |          |                     |              |       |  |  |
| 9.         | To un   | derstar  | nd Maxy                                               | well's e  | quation   | in diff   | erent fo  | onns an   | d differ | ent me   | dia.     |                     |              |       |  |  |
| 10         | . To un | derstand | the pro                                               | pagatio   | n of EM   | waves.    |           |           |          |          |          |                     |              |       |  |  |
| 11         | . Analy | se magr  | netic fiel                                            | ds in tra | nsform    | er and ii | nduction  | n motor.  |          |          |          |                     |              |       |  |  |
| Cours      | se Outo | comes (  | (COs):                                                |           |           |           |           |           |          |          |          |                     |              |       |  |  |
| After      | success | ful con  | npletior                                              | n of the  | course    | , studer  | nt will b | be able 1 | to       |          |          |                     |              |       |  |  |
|            |         |          |                                                       | Cours     | se Outo   | come (s   | 5)        |           |          |          |          |                     | s Taxon      | v     |  |  |
|            |         |          |                                                       |           |           |           |           |           |          |          | Lev      |                     | Descri       | L     |  |  |
| CO1        |         |          | nd the b                                              |           |           |           |           |           |          |          | 2        |                     | Understa     | -     |  |  |
| CO2        | unde    | r static | conditi                                               | ons.      | C         |           |           | nple co   | C        | tions    | 3        | 1                   | Applying     | 3     |  |  |
| CO3        | To ur   | nderstaı | nd diffe                                              | rent die  | electric  | materia   | als and   | conduc    | tors.    |          | 2        | 1                   | Understa     | nding |  |  |
| <b>CO4</b> |         |          | derstand magnetic force on different current element. |           |           |           |           |           |          | 2        | 1        | Understa            | nding        |       |  |  |
| CO5        |         |          | ime var                                               |           |           |           |           | elds.     |          |          | 4        |                     | Analysis     |       |  |  |
| CO6        | To ui   | ndersta  | and the                                               | propa     | gation    | of EM v   | waves.    |           |          |          | 2        | ١                   | Understa     | nding |  |  |
|            |         |          |                                                       |           |           |           |           |           |          |          |          |                     |              |       |  |  |
| Mappi      | ng of C | ourse (  | Dutcom                                                | es to Pi  | rogram    | Outcor    | nes (PC   | Os) & P   | rogram   | Specif   | ic Outc  | ic Outcomes (PSOs): |              |       |  |  |
|            | PO1     | PO2      | PO3                                                   | PO4       | PO5       | PO6       | PO7       | PO8       | PO9      | PO10     | PO11     | PO12                | 012 PSO1 PSO |       |  |  |
| CO1        | 3       | 1        | 1                                                     | 1         | 1         | -         | -         | _         | _        | _        | _        | 3                   | 2            | 2     |  |  |

|     |   | 102 | 100 |   | 1 00 | 100 | 107 | 100 | 10/ | 1010 |   |   | 1201 | 1~0_ |
|-----|---|-----|-----|---|------|-----|-----|-----|-----|------|---|---|------|------|
| CO1 | 3 | 1   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |
| CO2 | 3 | 1   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |
| CO3 | 3 | 1   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |
| CO4 | 3 | 1   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |
| CO5 | 3 | 1   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |
| CO6 | 3 | 2   | 1   | 1 | 1    | -   | -   | -   | -   | -    | - | 3 | 2    | 2    |

|                                                                                 | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |           |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| UNIT-I                                                                          | Vector Calculus and Basic laws of Electromagnetism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.             | COs       |
|                                                                                 | Vector algebra-addition, subtraction, components of vectors, scalar and<br>vector multiplications, triple products, three orthogonal coordinate<br>systems (rectangular, cylindrical and spherical). Vector calculus-<br>differentiation, partial differentiation, integration, vector operator,<br>integral theorems of vectors. Conversion of a vector from one coordinate<br>system to another. Faraday's law of electromagnetic induction, Biot-<br>Savart Law, Ampere Law, Magnetic flux and magnetic flux density,<br>Scalar and Vector Magnetic potentials. Steady magnetic fields produced | 8                | CO1       |
|                                                                                 | by current carrying conductors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | <b>CO</b> |
| UNIT-II                                                                         | Static Electric Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs.             | CO        |
|                                                                                 | Coulomb's law, Electric field intensity, Electrical field due to point<br>charges. Line, Surface and Volume charge distributions. Gauss law<br>and its applications. Absolute Electric potential, Potential difference,<br>Calculation of potential differences for different configurations.<br>Electric dipole, Electrostatic Energy and Energy density.                                                                                                                                                                                                                                         | 6                | CO2       |
| UNIT-III                                                                        | Conductors, Dielectrics and Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs.             | CO        |
|                                                                                 | Current and current density, Ohms Law in Point form, Continuity of<br>current, Boundary conditions of perfect dielectric materials.<br>Permittivity of dielectric materials, Capacitance, Capacitance of a two<br>wire line, Poisson's equation, Laplace's equation, Solution of Laplace<br>and Poisson's equation, Application of Laplace's and Poisson 's<br>equations.                                                                                                                                                                                                                          | 6                | CO3       |
| UNIT-IV                                                                         | Magnetic Forces, Materials and Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.             | СО        |
|                                                                                 | Force on a moving charge, Force on a differential current element,<br>Force between differential current elements, Nature of magnetic<br>materials, Magnetization and permeability, Magnetic boundary<br>conditions, Magnetic circuits, inductances and mutual inductances.                                                                                                                                                                                                                                                                                                                        | 6                | CO4       |
| UNIT-V                                                                          | Time Varying Fields and Maxwell's Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs.             | CO        |
|                                                                                 | Faraday's law for Electromagnetic induction, Displacement current,<br>Point form of Maxwell's equation, Integral form of Maxwell's<br>equations, Motional Electromotive forces. Boundary Conditions.                                                                                                                                                                                                                                                                                                                                                                                               | 6                | CO5       |
| UNIT-VI                                                                         | Electromagnetic waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs.             | CO        |
|                                                                                 | Derivation of Wave Equation, Uniform Plane Waves, Maxwell's<br>equation in Phasor form, Wave equation in Phasor form, Plane waves<br>in free space and in a homogenous material. Wave equation for a<br>conducting medium, Plane waves in lossy dielectrics, Propagation in<br>good conductors, Skin effect, Poynting's theorem.                                                                                                                                                                                                                                                                   | 6                | CO6       |
| <b>Text Books</b>                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |           |
| [T2] A. Pran<br>[T3] A. Pran<br>[T4] G.W. C<br>[T5] W.J. D<br><b>References</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | td, New 1<br>12. | Delhi 1i, |
| Publisher D                                                                     | urse In Electrical Machine Design" by A K Sawhney- Dhanpat Rai &<br>hanpat Rai & Co.<br>ry And Performance of Electrical Machines" is a book on Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           |

| Engineering And Technology by J. B. Gupta, Publisher: Kataria S. K. & Sons<br>[R3] 'Superconductivity and Electromagnetism' by Teruo Matsushita (Publisher:Springer) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-References                                                                                                                                                         |
| [1] https://nptel.ac.in/courses/108104087                                                                                                                            |
| [2] https://nptel.ac.in/courses/108106073                                                                                                                            |
| [3] https://nptel.ac.in/courses/115106122                                                                                                                            |

## **HS315: CORPORATE READINESS**

| Teaching Scheme       | <b>Examination Scheme</b> |          |
|-----------------------|---------------------------|----------|
| Lectures: 2 Hrs./Week | Continuous Assessment:    | 50 Marks |
| Credits: 02           | Total:                    | 50 Marks |
| Prerequisite Course:  |                           |          |

Quantitative aptitude, Verbal and Non-verbal communication

### Course Objectives:

1. To develop clarity in the exploration process of student career and to match his skills and interests with a chosen career path.

- 2. To develop required aptitude skills.
- 3. To design the functional and chronological resume.
- 4. To demonstrate the importance of critical thinking ability and expression in group discussions
- 5. To prepare students for the various professional interviews.
- 6. To develop different soft skills necessary to get success in their profession.

### **Course Outcomes (COs):**

|     | Course Outcome (s)                                                                                                                                                | Bloom's Taxonomy |            |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|--|--|
|     |                                                                                                                                                                   | Level            | Descriptor |  |  |
| CO1 | Remember placement processes of various organizations and modern job search approach.                                                                             | BTL 1            | Remember   |  |  |
| CO2 | Understand Industry Specific skill set with a view to design<br>an Ideal Resume.                                                                                  | BTL 2            | Understand |  |  |
| CO3 | Apply the knowledge of GD & Presentation Skill during<br>Industry Assessments for Placement/Internship/Industry<br>Training/Higher Studies/Competitive Exams etc. | BTL 3            | Apply      |  |  |
| CO4 | Analyse and apply the critical thinking ability as required during Aptitude/Technical Tests.                                                                      | BTL 4            | Analyse    |  |  |
| CO5 | Evaluate Technical/General Dataset to interpret insights in it.                                                                                                   | BTL 5            | Evaluate   |  |  |
| CO6 | Create an ideal personality that fits Industry requirement.                                                                                                       | BTL 6            | Create     |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   |                                                                                          |     |     |     |     |     |     | 02  | 00  | 02   | 01   | 01   |      |      |
| CO2   |                                                                                          |     |     |     |     |     |     | 02  | 03  | 03   | 03   | 01   |      |      |
| CO3   |                                                                                          |     |     |     |     |     |     | 01  | 03  | 03   | 02   | 01   |      |      |
| CO4   | 01                                                                                       | 01  |     |     |     |     |     |     |     | 01   | 01   |      |      |      |
| CO5   | 01                                                                                       | 01  |     |     |     |     |     |     |     |      |      |      |      |      |
| CO6   |                                                                                          |     |     |     |     |     |     | 02  | 03  | 03   | 02   | 03   |      |      |

| Course Contents                                                      |                                                                                                                                                                                                                                                                                                |            |     |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|--|--|--|--|--|--|--|--|
| UNIT-I                                                               | Placement Awareness                                                                                                                                                                                                                                                                            | Hrs.       | Cos |  |  |  |  |  |  |  |  |
|                                                                      | Discussion over Different Companies for recruitment, their eligibility criteria and placement procedures. Revision and Assessment of Quantitative Aptitude.                                                                                                                                    | 06<br>Hrs. | CO1 |  |  |  |  |  |  |  |  |
| UNIT-II                                                              | Resume Writing                                                                                                                                                                                                                                                                                 | Hrs.       | CO  |  |  |  |  |  |  |  |  |
|                                                                      | Keywords, resume examples for industry, professional font, active<br>language, important achievements, Proofread and edit. Innovative resume<br>building- video resume.                                                                                                                        | 05<br>Hrs. | CO2 |  |  |  |  |  |  |  |  |
| UNIT-III                                                             | Group Discussion and Presentation skills                                                                                                                                                                                                                                                       | Hrs.       | CO  |  |  |  |  |  |  |  |  |
|                                                                      | Why GDs are implemented commonly, Aspects which make up a Group Discussion, Tips on group discussion, do's and don'ts of GD and Presentation skills.                                                                                                                                           | 05<br>Hrs. | CO3 |  |  |  |  |  |  |  |  |
| UNIT-IV                                                              | Logical Reasoning I                                                                                                                                                                                                                                                                            | Hrs.       | СО  |  |  |  |  |  |  |  |  |
|                                                                      | Coding and Decoding (Visual Reasoning and series), Statement &<br>Conclusions (Syllogisms), Relationships (Analogy), Data arrangements,<br>Crypt arithmetic.                                                                                                                                   |            |     |  |  |  |  |  |  |  |  |
| UNIT-V                                                               | Logical Reasoning II                                                                                                                                                                                                                                                                           | Hrs.       | CO  |  |  |  |  |  |  |  |  |
|                                                                      | Data Interpretation, Data Sufficiency                                                                                                                                                                                                                                                          | 04<br>Hrs. | CO5 |  |  |  |  |  |  |  |  |
| UNIT-VI                                                              | Logical Reasoning III                                                                                                                                                                                                                                                                          | Hrs.       | CO  |  |  |  |  |  |  |  |  |
|                                                                      | Blood relation and dices, Clocks and Calendar, Direction sense and cubes, Logical connectives, Puzzle.                                                                                                                                                                                         | 05<br>Hrs. | CO6 |  |  |  |  |  |  |  |  |
| [T2]. Reaso<br>[T3]. Maste                                           | s:<br>odern Approach to Verbal & Non-Verbal Reasoning by R.S. Agarwal.<br>oning verbal and Non-Verbal by B. S. Sijwali.<br>er the Group Discussion & Personal Interview - Complete Discussion on the to<br>l by reputed B-schools & IIMs by Sheetal Desarda.                                   | pics       |     |  |  |  |  |  |  |  |  |
| References                                                           | S:                                                                                                                                                                                                                                                                                             |            |     |  |  |  |  |  |  |  |  |
| [R2]. Analy<br>[R3]. Logic<br>[R4]. Multi                            | cuts in Reasoning (Verbal, Non-Verbal, Analytical).<br>/tical Reasoning by M. K. Panday.<br>cal and analytical reasoning by K. Gupta.<br>-dimensional reasoning by Mishra & Kumar Dr. Lal.                                                                                                     |            |     |  |  |  |  |  |  |  |  |
| [2]. <u>https://v</u>                                                | hemech.in/quantitative-aptitude-and-logical-reasoning-books/<br>www.thelocalhub.in/2021/01/reasoning-competitive-exams-pdf.html                                                                                                                                                                |            |     |  |  |  |  |  |  |  |  |
| [1]. <u>https://</u><br>[2]. <u>https://</u><br>[3]. <u>https://</u> | Resources/MOOCs/ NPTEL Course Links:<br>www.practiceaptitudetests.com/non-verbal-reasoning-tests/<br>www.educationquizzes.com/11-plus/non-verbal-reasoning/<br>www.livecareer.com/resume/examples/web-development/e-learning-develop<br>novoresume.com/career-blog/how-to-write-a-resume-guide | <u>er</u>  |     |  |  |  |  |  |  |  |  |

# PR316: INTELLECTUAL PROPERTY RIGHTS AND ENTREPRENEURSHIP DEVELOPMENT

| Teaching Scheme        | Examination Scheme     |                 |
|------------------------|------------------------|-----------------|
| Lectures: 02 Hrs./Week | Continuous Assessment: | 20 Marks        |
|                        | End-Sem Exam:          | <b>30 Marks</b> |
| Credits: 02            | Total:                 | 50 Marks        |

**Prerequisite Course:** 

### **Course Objectives**

- 1. To introduce student with IPR
- 2. To explain IPR procedure in India such as Patents, Designs and Trademarks
- 3. To make aware economic importance of IPRs.
- 4. To develop ability to search and analyse the IPRs.
- 5. To Instill a spirit of entrepreneurship among the student participants.
- 6. To give insights into the Management of Small Family Business.

### **Course Outcomes (COs):**

|     | Course Outcome (s)                                      | Bloom's Taxonomy |            |  |  |
|-----|---------------------------------------------------------|------------------|------------|--|--|
|     |                                                         | Level            | Descriptor |  |  |
| CO1 | Understand patenting system                             | 2                | Create     |  |  |
| CO2 | Understand the procedure to file patent in India        | 2                | Apply      |  |  |
| CO3 | Understanding of financial importance of IPR            | 2                | Understand |  |  |
| CO4 | Search and analyse the patents, designs and Trademarks  | 4                | Analyse    |  |  |
| CO5 | Identify the Skill sets required to be an Entrepreneur. | 4                | Analyse    |  |  |
| CO6 | Understand the Role of supporting agencies and          | 4                | Analyse    |  |  |
|     | Governmental initiatives to promote Entrepreneurship.   |                  |            |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | -                                                                                        | -   | -   | -   | -   | 2   | -   | -   | -   | _    |      | -    | 1    | -    |
| CO2   | -                                                                                        | -   | -   | -   | -   | 2   | -   | -   | -   | -    |      | -    | 1    | -    |
| CO3   | -                                                                                        | -   | -   | -   | -   | 2   | -   | -   | -   | -    |      | -    | 1    | -    |
| CO4   | -                                                                                        | -   | -   | -   | -   | 2   | -   | -   | -   | -    |      | -    | 1    | -    |
| CO5   | _                                                                                        | _   | _   | _   | -   | 2   | 2   | 2   | -   | _    | 3    | _    | 1    | -    |
| CO6   | -                                                                                        | -   | _   | -   | -   | 2   | 2   | 2   | -   | _    | 3    | -    | 1    | -    |

|        | Course Contents                                         |      |     |  |  |  |  |  |  |  |  |
|--------|---------------------------------------------------------|------|-----|--|--|--|--|--|--|--|--|
| UNIT-I | INTRODUCTION TO IPR                                     | Hrs. | COs |  |  |  |  |  |  |  |  |
|        | Concepts of IPR                                         |      |     |  |  |  |  |  |  |  |  |
|        | • The history behind development of IPR                 | 04   | CO1 |  |  |  |  |  |  |  |  |
|        | • Necessity of IPR and steps to create awareness of IPR |      |     |  |  |  |  |  |  |  |  |

|          | <ul> <li>Concept of IP Management</li> <li>Intellectual Property and Marketing</li> <li>IP asset valuation</li> <li>Introduction to the leading International Instruments concerning<br/>Intellectual Property Rights: the Berne Convention, Universal<br/>Copyright Convention, The Paris Convention, Patent Co-operation</li> </ul>                                                                                                                                                                                  |    |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|          | Treaty, TRIPS, The World Intellectual Property Organization (WIPO) and the UNESCO                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |
| UNIT-II  | PATENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |
|          | <ul> <li>Introduction to Patents</li> <li>Procedure for obtaining a Patent</li> <li>Licensing and Assignment of Patents <ol> <li>Software Licensing</li> <li>General public Licensing</li> <li>Compulsory Licensing</li> </ol> </li> <li>Infringement of Patents</li> <li>Software patent and Indian scenario</li> </ul>                                                                                                                                                                                               | 04 | CO2 |
| UNIT-III | DESIGNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |
|          | <ul> <li>Registrable and non-Registrable Designs</li> <li>Novelty &amp; Originality</li> <li>Procedure for Registration of Design</li> <li>Copyright under Design</li> <li>Assignment, Transmission, License</li> <li>Procedure for Cancellation of Design</li> <li>Infringement</li> <li>Remedies</li> </ul>                                                                                                                                                                                                          | 04 | CO3 |
| UNIT-IV  | TRADEMARKS AND COPY RIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |
|          | <ul> <li>A) Trademarks <ul> <li>Concept of trademarks</li> <li>Importance of brands and the generation of "goodwill"</li> <li>Trademark registration procedure</li> <li>Infringement of trademarks and Remedies available</li> <li>Assignment and Licensing of Trademarks</li> </ul> </li> <li>B) Copyright Right <ul> <li>Concept of Copyright Right</li> <li>Assignment of Copyrights</li> <li>Registration procedure of Copyrights</li> <li>Infringement (piracy) of Copyrights and Remedies</li> </ul> </li> </ul> | 04 | CO4 |
| UNIT-V   | ENTREPRENEURSHIP: INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |
|          | <b>5.1 Concept and Definitions</b> :<br>Entrepreneur & Entrepreneurship,<br>Entrepreneurship and Economic Development,<br>A Typology of Entrepreneurs.                                                                                                                                                                                                                                                                                                                                                                 | 04 | CO5 |

|                   | 5.2 Entrepreneurial Competencies:                                                                       |        |     |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------|--------|-----|--|--|--|--|--|--|
|                   | The Entrepreneur's Role,                                                                                |        |     |  |  |  |  |  |  |
|                   | Entrepreneurial Skills: creativity, problem solving, decision                                           |        |     |  |  |  |  |  |  |
|                   | making, communication, leadership quality;                                                              |        |     |  |  |  |  |  |  |
|                   | Self-Analysis,                                                                                          |        |     |  |  |  |  |  |  |
|                   | Culture & values,                                                                                       |        |     |  |  |  |  |  |  |
|                   | Risk-taking ability,                                                                                    |        |     |  |  |  |  |  |  |
|                   | Technology knowhow.                                                                                     |        |     |  |  |  |  |  |  |
|                   | 5.3 Factor Affecting Entrepreneurial Growth:                                                            |        |     |  |  |  |  |  |  |
|                   |                                                                                                         |        |     |  |  |  |  |  |  |
|                   | Economic & Non-Economic Factors,                                                                        |        |     |  |  |  |  |  |  |
|                   | EDP Programmes.                                                                                         |        |     |  |  |  |  |  |  |
|                   | 5.4 Steps in Entrepreneurial Process:                                                                   |        |     |  |  |  |  |  |  |
|                   | Deciding Developing                                                                                     |        |     |  |  |  |  |  |  |
|                   | Moving                                                                                                  |        |     |  |  |  |  |  |  |
|                   | Managing                                                                                                |        |     |  |  |  |  |  |  |
|                   | Recognizing.                                                                                            |        |     |  |  |  |  |  |  |
| UNIT-VI           | RESOURCES FOR ENTREPRENEURSHIP                                                                          |        |     |  |  |  |  |  |  |
|                   | 6.1 Project Report Preparation:                                                                         |        |     |  |  |  |  |  |  |
|                   | Specimen Format of Project Report;                                                                      |        |     |  |  |  |  |  |  |
|                   | Project Planning and Scheduling using PERT / CPM;<br>Mathada of Project Approximate Example Frequencies |        |     |  |  |  |  |  |  |
|                   | Methods of Project Appraisal – Feasibility Study both Economic<br>and Market                            |        |     |  |  |  |  |  |  |
|                   | Preparation projected financial statement.                                                              |        |     |  |  |  |  |  |  |
|                   | 6.2 Role of Support Institutions and Management of Small Business:                                      |        |     |  |  |  |  |  |  |
|                   | Director of Industries,                                                                                 |        |     |  |  |  |  |  |  |
|                   | DIC,                                                                                                    |        |     |  |  |  |  |  |  |
|                   | SIDO,<br>SIDBI,                                                                                         |        |     |  |  |  |  |  |  |
|                   | Small Industries Development Corporation (SIDC),                                                        |        |     |  |  |  |  |  |  |
|                   | SISI,                                                                                                   | 04     | CO6 |  |  |  |  |  |  |
|                   | NSIC,                                                                                                   |        |     |  |  |  |  |  |  |
|                   | NISBUED,<br>State Einemain Comparation (SEC)                                                            |        |     |  |  |  |  |  |  |
|                   | State Financial Corporation (SFC)<br>EPC,                                                               |        |     |  |  |  |  |  |  |
|                   | ECGC.                                                                                                   |        |     |  |  |  |  |  |  |
|                   | 6.3 Various Governmental Initiatives:                                                                   |        |     |  |  |  |  |  |  |
|                   | Make in India                                                                                           |        |     |  |  |  |  |  |  |
|                   | Start Up India<br>Stand Up India                                                                        |        |     |  |  |  |  |  |  |
|                   | Stand Up India<br>Digital India                                                                         |        |     |  |  |  |  |  |  |
|                   | Skill India                                                                                             |        |     |  |  |  |  |  |  |
|                   | 6.4 Case Studies of Successful Entrepreneurs                                                            |        |     |  |  |  |  |  |  |
| <b>Text Books</b> |                                                                                                         |        |     |  |  |  |  |  |  |
| [T1]. Nee         | raj Pandey and Khushdeep Dharni, Intellectual Property Rights, PHI, No                                  | ew Del | hi  |  |  |  |  |  |  |
| [T2]. The         | Indian Patent act 1970.                                                                                 |        |     |  |  |  |  |  |  |
| [T3]. The         | [T3]. The copy right act 1957                                                                           |        |     |  |  |  |  |  |  |
| [T4]. Man         | ual of patent office practice and procedure of Govt. of India.                                          |        |     |  |  |  |  |  |  |
| 1                 |                                                                                                         |        |     |  |  |  |  |  |  |

- [T6]. Manual of Trademarks Practice and Procedure of Govt. India
- [T7]. Semiconductor Integrated Circuits Layout Design (SICLD) Act 2000 of Govt. India
- [T8]. Intellectual Property Rights- A Primer, R. Anita Rao & Bhanoji, Rao, Eastern BookCo.
- [T9]. The Dynamics of Entrepreneurial Development & Management by Desai, Vasant, Himalaya Publishing House, Delhi.
- [T10]. Managing Small Business by Longenecker, Moore, Petty and Palich, Cengage Learning, India Edition.
- [T11]. Cases in Entrepreneurship by Morse and Mitchell, Sage South Asia Edition.
- [T12]. Entrepreneurship Indian Cases on Change Agents by K Ramchandran, TMGH.

### **References:**

- [R1]. Handbook of Indian Patent Law and Practice,
- [R2]. Entrepreneurship: New Venture Creation by David H. Holt
- [R3]. Entrepreneurship Development New Venture Creation by Satish Taneja, S.L.Gupta
- [R4]. Project management by K. Nagarajan.

## EE317: POWER SYSTEM OPERATION AND CONTROL LABORATORY

|                            | LABORATOI                                                                               | K Y              |              |                 |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------|------------------|--------------|-----------------|--|--|--|--|--|--|--|--|
| Teachi                     | ing Scheme Exa                                                                          | mination         | Scheme       |                 |  |  |  |  |  |  |  |  |
| Lectur                     | res: Hrs./Week Ora                                                                      | ıl:              |              | 25 Marks        |  |  |  |  |  |  |  |  |
| Practio                    | cal: 02 Hrs./Week Terr                                                                  | m Work:          | Marks        |                 |  |  |  |  |  |  |  |  |
| Credit                     | s: 01 Tota                                                                              | al:              | 25 Marks     |                 |  |  |  |  |  |  |  |  |
|                            | quisite Course:                                                                         |                  |              |                 |  |  |  |  |  |  |  |  |
| 1. Basics of Power System. |                                                                                         |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | MATLAB Programming & Simulink.                                                          |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | e Objectives                                                                            |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | Introduce the power system planning and operational                                     | studies          |              |                 |  |  |  |  |  |  |  |  |
|                            | Explain in depth knowledge on network matrices.                                         |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | Discuss the power flow studies using GS and NR met                                      |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | Model and predict the behavior and operation of pow                                     |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | 5. Demonstrate the economic dispatch and electromagnetic transients in the power system |                  |              |                 |  |  |  |  |  |  |  |  |
|                            | Identify & formulate solutions to problems relevant to                                  | o power sy       | stem using s | software tools. |  |  |  |  |  |  |  |  |
|                            | e Outcomes (COs):                                                                       | -                |              |                 |  |  |  |  |  |  |  |  |
|                            | uccessful completion of the course, student will be ab                                  | ble to           |              |                 |  |  |  |  |  |  |  |  |
| Course                     | e Outcome (s)                                                                           | Bloom's Taxonomy |              |                 |  |  |  |  |  |  |  |  |
|                            |                                                                                         |                  | Level        | Descriptor      |  |  |  |  |  |  |  |  |
| CO1                        | Estimate the transmission line parameters and load                                      | flow             | 5            | Evaluate        |  |  |  |  |  |  |  |  |
|                            | analysis in power system.                                                               |                  |              |                 |  |  |  |  |  |  |  |  |
| CO2                        | Acquire knowledge on Formation of Bus Admitta                                           | ance and         | 6            | Create          |  |  |  |  |  |  |  |  |
|                            | Impedance Matrices and Solution of Networks.                                            |                  |              |                 |  |  |  |  |  |  |  |  |
| CO3                        | To model and analyze the single area and two are                                        | ea power         | 5            | Evaluate        |  |  |  |  |  |  |  |  |
|                            | system                                                                                  |                  |              |                 |  |  |  |  |  |  |  |  |
| CO4                        | Solve the economic dispatch problem of power sys                                        | tem with         | 4            | Analyze         |  |  |  |  |  |  |  |  |
|                            | and without losses                                                                      | -                |              |                 |  |  |  |  |  |  |  |  |
| CO5                        | Examine the stability level of Single and Multi-                                        | -machine         | 5            | Evaluate        |  |  |  |  |  |  |  |  |
|                            | system                                                                                  | 1:00             | 2            |                 |  |  |  |  |  |  |  |  |
| CO6                        | Ability to employ different techniques to analyze                                       | different        | 3            | Apply           |  |  |  |  |  |  |  |  |
|                            | power system network conditions.                                                        |                  |              |                 |  |  |  |  |  |  |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |
| CO2   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 2    | 3    |
| CO3   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |
| CO4   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |
| CO5   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |
| CO6   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | 1    | 1    | 2    | 3    | 3    |

|                                                                                                                               | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|
| Ex. No                                                                                                                        | Name of Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.                                                          | COs                                                  |
| 1                                                                                                                             | MATLAB Program to Solve Swing Equation using Point-by-<br>Point Method                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                             | CO1                                                  |
| 2                                                                                                                             | To study equal area criteria for transient stability analysis.                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                             | CO1<br>CO2                                           |
| 3                                                                                                                             | Simulink Model of Single Area Load frequency control without PI Controller                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                             | CO1<br>CO2                                           |
| 4                                                                                                                             | Simulink Model of Single Area Load frequency control with PI Controller                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                             | CO1<br>CO2                                           |
| 5                                                                                                                             | To plot exact dynamic response of two area load frequency control without integral action.                                                                                                                                                                                                                                                                                                                                                                          | 2                                                             | CO1<br>CO2                                           |
| б                                                                                                                             | Simulink model for two area load frequency control with integral action.                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                             | CO1<br>CO3<br>CO5                                    |
| 7                                                                                                                             | Simulink model for evaluating transient stability of single machine connected to infinite bus                                                                                                                                                                                                                                                                                                                                                                       | 2                                                             | CO1<br>CO3<br>CO6                                    |
| 8                                                                                                                             | Economic Dispatch using Lambda iteration method                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                             | CO1<br>CO3<br>CO4                                    |
| 9                                                                                                                             | Modelling of IEEE excitation system, turbine and Governor system                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                             | CO1<br>CO5<br>CO6                                    |
| 10                                                                                                                            | Modeling of FACTS devices using Simulink                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                             | CO1<br>CO5<br>CO6                                    |
| 11                                                                                                                            | To see the effect of midpoint reactive power compensation on<br>voltage through static var compensator (SVC) and static<br>synchronous compensation (STATCOM)                                                                                                                                                                                                                                                                                                       | 2                                                             | CO1<br>CO5<br>CO6                                    |
| 12                                                                                                                            | Electromagnetic Transients in Power Systems: Transmission<br>Line Energization                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                             | CO1<br>CO5<br>CO6                                    |
| Any 08 ex                                                                                                                     | periments to be performed from above list.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |                                                      |
| ETAP", C<br>[T2] Abhi<br>Hall of Ind<br>[T3] J. Na<br>Publishing<br>[T4] P. S.<br><b>Reference</b><br>[R1].S. St<br>[R2].Nara | chandra Madhusudan Shertukde, "Power Systems Analysis Illust<br>RC Press Taylor & Francis Group<br>jit Chakrabarti, Sunita Halder, "Power System Analysis Operatio<br>dia.<br>grath, D. P. Kothari, "Modern Power System Analysis", 4th Edit<br>g Co. Ltd.,<br>R. Murthy, "Operation & Control in Power System", B. S. Public<br>es:<br>reenivasan, G. Sivanagaraju, Power System Operation and Contr<br>in G. Hingorani, Laszlo Gyugyi, "Understanding FACTs" IEEE | n and Con<br>ion, Tata<br>cation, 20<br>ol , Pearse<br>Press. | ntrol", Prentice<br>McGraw Hill<br>08<br>on Editions |
| Ed.                                                                                                                           | n J. Wood, Bruce F. Wollenberg "Power Generation, Operation, a                                                                                                                                                                                                                                                                                                                                                                                                      | and Contr                                                     | or, wiley India                                      |
| <b>E-referen</b>                                                                                                              | ces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                      |

[E1]. <u>http://vp-dei.vlabs.ac.in/</u> (Virtual Power Lab)

## **EE318: FEEDBACK CONTROL SYSTEMS LABORATORY**

|                                                                       | ing Scheme Examination Examin | ation Scheme                                       | 50 Mark                                                                           |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                       | cal: 02 Hrs./Week Term V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | Mark                                                                              |
| Credit                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | 50 Mark                                                                           |
| Prere                                                                 | <b>quisite Course:</b><br>Knowledge of engineering mathematics, signals & systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , circuit analysis                                 |                                                                                   |
| Course                                                                | e Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                   |
| me                                                                    | del a complicated system into a more simplified form to in<br>chanical systems in terms of electrical system to construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | •                                                                                 |
| 8. To<br>of t<br>3. 1<br>the syst                                     | e Outcomes (COs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                                                   |
| 8. To<br>of t<br>3. 1<br>the syst                                     | employ time domain and frequency domain analysis to pre-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to explain the natu                                | re of stability of                                                                |
| 8. To<br>of t<br>3. 1<br>the syst                                     | employ time domain and frequency domain analysis to pre-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.<br>e Outcomes (COs):<br>uccessful completion of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to explain the natu                                | are of stability of                                                               |
| 8. To<br>of t<br>3. 1<br>the syst<br>Course<br>After st               | employ time domain and frequency domain analysis to pro-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.<br>e Outcomes (COs):<br>uccessful completion of the course, student will be able to<br>Course Outcome (s)<br>Determine transfer function model of any physical syst                                                                                                                                                                                                                                                                                                                                                                                             | to explain the natu<br>Bloom<br>Level              | re of stability of                                                                |
| 8. To<br>of t<br>3. 1<br>the syst<br>Course<br>After st<br>CO1        | employ time domain and frequency domain analysis to pre-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.<br>e Outcomes (COs):<br>uccessful completion of the course, student will be able to<br>Course Outcome (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to explain the natu<br>Bloom<br>Level              | re of stability of<br>1's Taxonomy<br>Descriptor                                  |
| 8. To<br>of t<br>3. 1<br>the syst<br>Course<br>After st<br>CO1<br>CO2 | employ time domain and frequency domain analysis to pre-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.<br>e Outcomes (COs):<br>uccessful completion of the course, student will be able to<br>Course Outcome (s)<br>Determine transfer function model of any physical syst<br>AND use modern computing tools.                                                                                                                                                                                                                                                                                                                                                          | to explain the natu<br>Bloom<br>Level<br>em 3<br>4 | ure of stability of<br><b>1's Taxonomy</b><br>Descripton<br>Applying<br>Analysing |
| 8. To<br>of t<br>3. 1<br>the syst                                     | employ time domain and frequency domain analysis to pre-<br>the system for standard input functions.<br>Formulate different types of analysis in frequency domain<br>tem.<br>e Outcomes (COs):<br>uccessful completion of the course, student will be able to<br>Course Outcome (s)<br>Determine transfer function model of any physical syst<br>AND use modern computing tools.<br>Analyse time domain stability of linear system                                                                                                                                                                                                                                                                                                        | to explain the natu<br>Bloom<br>Level<br>em 3<br>4 | are of stability of<br>a's Taxonomy<br>Descripton<br>Applying                     |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 2                                                                                        | 2   | 1   | 2   | 2   | 2   | 2   | -   | -   | -    | 1    | 2    | 2    | 3    |
| CO2   | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 2   | -   | I   | -    | 1    | 2    | 2    | 3    |
| CO3   | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 2   | -   | -   | -    | 1    | 2    | 2    | 3    |
| CO4   | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 2   | -   | -   | -    | 1    | 2    | 2    | 3    |
| CO5   | 3                                                                                        | 2   | 1   | 2   | 2   | 2   | 2   | -   | -   | -    | 1    | 2    | 2    | 3    |

|                                                 | Course Contents                                                                                                                                                                                                      |                         |       |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|
| A. Minim                                        | um three experiments should be conducted                                                                                                                                                                             |                         |       |
| Ex. No                                          | Name of Experiment                                                                                                                                                                                                   | Hrs.                    | COs   |
| 1                                               | Experimental determination of DC servo motor parameters for mathematical modelling, transfer function and characteristics                                                                                            | 02                      | CO1   |
| 2                                               | Experimental study of time response characteristics of R-L-C second order system: Validation using simulation.                                                                                                       | 02                      | CO2   |
| 3                                               | Experimental analysis of D.C. Motor Position control System.                                                                                                                                                         | 02                      | CO1   |
| 4                                               | Experimental determination of frequency response of Lead Compensator                                                                                                                                                 | 02                      | CO4   |
| 5                                               | Experimental determination of frequency response of Lag compensator.                                                                                                                                                 | 02                      | CO4   |
| 6                                               | Experimental determination of transfer function of any one<br>physical systems (AC servomotor/ Two Tank<br>System/Temperature Control / Level Control)                                                               | 02                      | CO1   |
| B. Minim                                        | um five experiments should be conducted (perform using softw                                                                                                                                                         | are)                    |       |
| Ex. No                                          | Name of Experiment                                                                                                                                                                                                   | Hrs.                    | COs   |
| 7                                               | To study the basic of MATLAB / Scilab, Different Toolboxes in MATLAB, and Introduction to Control Systems Toolbox                                                                                                    | 02                      | CO1   |
| 8                                               | Study of basic MATLAB / Scilab commands and matrix constructors and operations                                                                                                                                       | 02                      | CO1   |
| 9                                               | Time response of 2 <sup>nd</sup> order system subjected to various test inputs                                                                                                                                       | 02                      | CO2   |
| 10                                              | Plot unit step responses of given transfer function and find delay time, rise time, peak time and peak overshoot.                                                                                                    | 02                      | CO2   |
| 11                                              | Effect of addition of pole-zero on root locus of second order system                                                                                                                                                 | 02                      | CO2   |
| 12                                              | Effect of addition of dominant and non - dominant poles on step response of second order system                                                                                                                      | 02                      | CO2   |
| 13                                              | Stability analysis using a) Root locus b) Bode Plot                                                                                                                                                                  | 02                      | CO4   |
| 14                                              | Stability analysis using a)Polar Plot b) Nyquist Plot                                                                                                                                                                | 02                      | CO4   |
| 15                                              | Transformation of transfer function model to state space model and vice versa                                                                                                                                        | 02                      | CO5   |
| 5th editior<br>[T2] Ka<br>[T3] Nis<br>Reference | . Nagrath, M. Gopal, "Control System Engineering", New Age Inte<br>n, 2007.<br>tsuhiko Ogata, "Modern control system engineering", Prentice Hall<br>se N. S. "Control Systems Engineering", John Wiley & Sons, Incor | l, 2010.<br>porated, 20 | 11    |
| [R2] B.                                         | . Gopal, "Control Systems: Principles and Design", McGraw Hill E<br>C. Kuo, "Automatic Control System", Prentice Hall, 1995                                                                                          | ducation, 1             | .997. |
| E-Referen                                       |                                                                                                                                                                                                                      |                         |       |
| [1] <u>htt</u>                                  | os://nptel.ac.in/courses/107/106/107106081/                                                                                                                                                                          |                         |       |

[2] <u>https://nptel.ac.in/courses/108/106/108106098/</u>

## **EE319: ELECTRICAL MACHINE DESIGN LAB**

| Teaching Scheme         | Examination Scheme |          |
|-------------------------|--------------------|----------|
| Lectures: Hrs./Week     | Oral:              | 25 Marks |
| Practical: 02 Hrs./Week | Term Work:         | Marks    |
| Credits: 01             | Total:             | 25 Marks |
| Prerequisite Course:    |                    |          |

#### Prerequisite Course:

- 1. Knowledge of various materials used in electrical machines.
- 2. Knowledge of types, construction and working of transformer.
- 3. Knowledge of types, construction and working of three phase induction motor.

### **Course Objectives**

- 1. To make student understand basic of Electrical Machine design.
- 2. To design transformer.
- 3. To understand determination of parameters of transformer.
- 4. To design Induction motor.
- 5. To understand determination of parameters of Induction motor.
- 6. To understand computer aided design of electrical machines

### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|            | Course Outcome (s)                                            | Bloom's Taxonomy |             |  |  |
|------------|---------------------------------------------------------------|------------------|-------------|--|--|
|            |                                                               | Level            | Descriptor  |  |  |
| <b>CO1</b> | Select proper commercial materials, their properties and      | 2                | Understandi |  |  |
| CO1        | selection criterions, IS standards used in electrical machine |                  | ng          |  |  |
|            | design.                                                       |                  |             |  |  |
| CO2        | Calculate main dimensions and Design of single phase and      | 6                | Creating    |  |  |
| 02         | three phase transformer.                                      |                  |             |  |  |
| CO3        | Determine the parameters of transformer.                      | 5                | Evaluating  |  |  |
| <b>CO1</b> | Calculate main dimensions and design of three phase           | 6                | Creating    |  |  |
| CO4        | Induction motor.                                              |                  |             |  |  |
| CO5        | Determine parameters of three phase Induction motor.          | 5                | Evaluating  |  |  |
| CO6        | Apply computer aided optimization techniques for design of    | 3                | Applying    |  |  |
| CO6        | electrical machines                                           |                  |             |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 3   | 3   | 2   | 2   | 1   | 1   | 1   | 1   | -    | 1    | 1    | 1    | 3    |
| CO2   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | -    | 2    | 1    | 1    | 1    |
| CO3   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | -    | 2    | 1    | 1    | 1    |
| CO4   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 2   | 2   | -    | 2    | 1    | 1    | 1    |
| CO5   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 1   | _    | 2    | 1    | 1    | 1    |
| CO6   | 3                                                                                        | 3   | 3   | 3   | 3   | 1   | 1   | 2   | 2   | -    | 2    | 1    | 3    | 1    |

Sanjivani College of Engineering, Kopargaon

| Course Contents                                                 |                                                                                                                                                                                                                                                                                                                                                                              |             |           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--|--|--|--|--|--|--|
| Ex. No                                                          | Name of Experiment                                                                                                                                                                                                                                                                                                                                                           | Hrs.        | COs       |  |  |  |  |  |  |  |
| 1                                                               | Design reports along with the drawing sheet on transformer parts.                                                                                                                                                                                                                                                                                                            | 2           | 1         |  |  |  |  |  |  |  |
| 2                                                               | Design reports along with the drawing sheet on transformer Design.                                                                                                                                                                                                                                                                                                           | 4           | 2,3       |  |  |  |  |  |  |  |
| 3                                                               |                                                                                                                                                                                                                                                                                                                                                                              |             |           |  |  |  |  |  |  |  |
| 4                                                               | Design reports along with the drawing sheet on Induction Motor Design.                                                                                                                                                                                                                                                                                                       | 4           | 5         |  |  |  |  |  |  |  |
| 5                                                               | Details and layout of AC winding with design report. (Sheet optional CAD or Drawing)                                                                                                                                                                                                                                                                                         | 4           | 6         |  |  |  |  |  |  |  |
| 6                                                               | Report based on Industrial visit to a manufacturing unit                                                                                                                                                                                                                                                                                                                     |             |           |  |  |  |  |  |  |  |
| Text Bool                                                       | <b>ζ</b> δ:                                                                                                                                                                                                                                                                                                                                                                  | L           |           |  |  |  |  |  |  |  |
| Lon<br>[T2] A.K.<br>and<br>[T3] K. G<br>[T4] R. K<br>[T5] Indra | <ul> <li>Say – Theory and Performance and Design of A.C. Machines, 3rd I don.</li> <li>Sawhney – A Course in Electrical Machine Design, 10th Edition, sons New Delhi.</li> <li>Upadhyay- Design of Electrical Machines, New age publication</li> <li>Agarwal – Principles of Electrical Machine Design, S. K.Katariya jit Dasgupta – Design of Transformers – TMH</li> </ul> | - Dhanpat I |           |  |  |  |  |  |  |  |
| Reference                                                       |                                                                                                                                                                                                                                                                                                                                                                              |             |           |  |  |  |  |  |  |  |
| Saty<br>[R2] A Sh<br>3rd ]<br>[R3] Vish<br>[R4] Bhar            | Narang, A Text Book of Electrical Engineering Drawings, Reprint<br>a Prakashan, New Delhi.<br>anmugasundaram, G. Gangadharan, R. Palani, - Electrical Machine<br>Edition, 3rd Reprint 1988 - Wiely Eastern Ltd., - New Delhi<br>nu Murti, "Computer Aided Design for Electrical Machines", B.S. I<br>at Heavy Electricals Limited, Transformers - TMH.                       | e Design Da | ıta Book, |  |  |  |  |  |  |  |
| E-Referen                                                       |                                                                                                                                                                                                                                                                                                                                                                              |             |           |  |  |  |  |  |  |  |
| [1] <u>http</u>                                                 | s://nptel.ac.in/courses/108/106/108106023/#                                                                                                                                                                                                                                                                                                                                  |             |           |  |  |  |  |  |  |  |

## **EE320: PROGRAMMING LABORATORY**

|                   | <mark>g Scheme</mark><br> : Hrs./\                             |                                 |                              |           |            |          |          | Exam<br>Practi | ination   | Schen    | ne      | 50 M        | onlyc |
|-------------------|----------------------------------------------------------------|---------------------------------|------------------------------|-----------|------------|----------|----------|----------------|-----------|----------|---------|-------------|-------|
|                   |                                                                |                                 |                              |           |            |          |          |                |           |          |         |             |       |
| Credits           | ul: 02 Hrs                                                     | ./ week                         |                              |           |            |          |          | Total:         | Work:     |          |         | Ma<br>50 Ma |       |
| Prereq            | uisite Cou<br>Basics of C                                      |                                 | amming                       | 2         |            |          |          | 101411         |           |          |         | 50 111      |       |
| Course            | Objective                                                      | S                               |                              |           |            |          |          |                |           |          |         |             |       |
| p<br>2. T<br>3. T | o be able t<br>ogrammir<br>o demonst<br>o understa<br>Outcomes | ng langu<br>rate abo<br>nd abou | uage.<br>out Pytl<br>ut Func | non dat   | a struct   | ures lik | e Lists  | , Tuples       | s, Sets a | and dict | ionarie |             | 2     |
|                   | ccessful co                                                    | <u> </u>                        |                              | ne cours  | se, stud   | ent wil  | l be abl | e to           |           |          |         |             |       |
|                   |                                                                | 1                               |                              |           | come (s    |          |          |                |           | Blo      | om's T  | axonoi      | nv    |
|                   |                                                                |                                 |                              |           |            |          |          |                |           | Le       |         | Descri      | •     |
| CO1               | Apply the scripting                                            |                                 |                              | pts of s  | cripting   | g and th | ne contr | ibution        | s of      | 3        |         | Apply       | ving  |
| CO2               | Ability<br>and dict                                            | -                               |                              | 10n data  | a struct   | ures lik | e Lists, | , Tuples       | s, Sets   | 2        |         | Under<br>d  | stan  |
| CO3               | Apply p<br>Module                                              |                                 |                              | -         |            | oplicati | ons usi  | ng Fun         | ctions,   | 3        |         | Apply       | ving  |
| CO4               | Implem                                                         |                                 |                              |           |            | ondition | als and  | loops.         |           | 2        |         | Under<br>d  | stan  |
| CO5               | Use Pyt<br>data.                                               | hon list                        | ts, tuple                    | es, dicti | onaries    | for rep  | resenti  | ng com         | pound     | 4        |         | Analy       | sing  |
| CO6               | Read an                                                        | d write                         | data fr                      | om/to f   | files in I | Python   |          |                |           | 3        |         | Apply       | ving  |
| apping of         | Course Ou                                                      | itcomes                         | to Prog                      | ram Out   | tcomes     | (POs) &  | Program  | m Speci        | fic Outc  | omes (I  | PSOs):  |             |       |
|                   |                                                                | I                               | -                            |           | 1          |          |          | -              |           |          | 1       | DCO1        | Da    |
| PC                | 1 PO2                                                          | PO3                             | PO4                          | PO5       | PO6        | PO7      | PO8      | PO9            | PO10      | PO11     | PO12    | PSO1        | PS    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 2   | 2   | 1   | 2   | 3   | 1   | 1   |     | 1    |      | 2    |      |      |
| CO2 | 3   | 1   | 1   | 2   | 2   | 2   | 2   | 1   | 1   | 1    | 1    | 2    |      |      |
| CO3 | 3   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1   |      | 1    | 1    |      |      |
| CO4 | 3   | 1   | 2   | 2   | 1   | 2   | 1   | 1   | 1   | 1    | 1    | 2    |      |      |
| CO5 | 3   | 2   | 1   | 3   | 1   | 1   |     | 1   |     | 2    | 1    | 1    |      |      |
| CO6 | 3   | 2   | 1   | 1   | 2   | 1   | 1   |     | 1   | 1    | 1    | 2    |      |      |

Sanjivani College of Engineering, Kopargaon

2020 Pattern

|            | Course Contents                                                                                                                                                           |      |      |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|--|--|--|--|--|--|
| Ex. No     | Name of Experiment                                                                                                                                                        | Hrs. | COs  |  |  |  |  |  |  |  |
| 1          | To demonstrate about Basics of Python Programming                                                                                                                         | 2    | 2,4  |  |  |  |  |  |  |  |
| 2          | 2 To demonstrate different operators in Python                                                                                                                            |      |      |  |  |  |  |  |  |  |
| 3          | To study Conditional statements in Python                                                                                                                                 | 2    | 3, 4 |  |  |  |  |  |  |  |
| 4          | To demonstrate the control transfer statements in Python                                                                                                                  | 2    | 2,4  |  |  |  |  |  |  |  |
| 5          | To perform read and write operations on a file.                                                                                                                           | 2    | 3, 4 |  |  |  |  |  |  |  |
| 6          | To demonstrate the different ways of creating list objects                                                                                                                | 2    | 2,4  |  |  |  |  |  |  |  |
| 7          | Demonstrate the different parameters used while writing functions in Python                                                                                               | 2    | 2,4  |  |  |  |  |  |  |  |
| 8          | To study in-built functions to use Regular Expressions                                                                                                                    | 2    | 3,4  |  |  |  |  |  |  |  |
| Text Book  | ·S:                                                                                                                                                                       |      |      |  |  |  |  |  |  |  |
| [T1] Paul  | Barry, "Head-First Python: A Brain-Friendly Guide"                                                                                                                        |      |      |  |  |  |  |  |  |  |
| Reference  | s:                                                                                                                                                                        |      |      |  |  |  |  |  |  |  |
|            | [R1] Eric Matthes, "A Hands-On, Project-Based Introduction to Programming"<br>[R2] Mark Lutz, "Learning Python, 5th Edition                                               |      |      |  |  |  |  |  |  |  |
| E-Referen  | ices                                                                                                                                                                      |      |      |  |  |  |  |  |  |  |
| [E2] http: | [E1] https://www.python.org/about/gettingstarted/<br>[E2] https://www.niit.com/india/short-term-courses/data-analytics/python-programming-<br>and-data-exploration-python |      |      |  |  |  |  |  |  |  |

## **EE321: CREATIONAL ACTIVITY**

| Teaching Scheme         | Examination Scheme |          |
|-------------------------|--------------------|----------|
| Practical: 02 Hrs./Week | Term Work:         | 50 Marks |
| Credits: 01             | Total:             | 50 Marks |

#### **Prerequisite Course:**

Human Values, Communication Skills, Sports Enthusiasm

### **Course Objectives**

4. Overall development of a student's Technically, Mentally, and emotionally.

### **Course Outcomes (COs):**

|     | Course Outcome (s)                                             | Bloom's Taxonomy |            |  |
|-----|----------------------------------------------------------------|------------------|------------|--|
|     |                                                                | Level            | Descriptor |  |
| CO1 | Influence a better attitude towards the environment and more   | 5                | Evaluate   |  |
|     | responsible behaviour                                          |                  |            |  |
| CO2 | Use of communication skills and team building techniques as    | 3                | Apply      |  |
|     | students have to work in groups to solve problems.             |                  |            |  |
| CO3 | Understand working of professional bodies and participate in   | 2                | Understan  |  |
|     | various activities                                             |                  | d          |  |
| CO4 | Apply the knowledge to participate in Extra-Curricular and     | 3                | Apply      |  |
|     | Co-curricular activities                                       |                  |            |  |
| CO5 | Opportunity to undertake leadership, question actions and      | 3                | Apply      |  |
|     | regulations and accept responsibility for their own behaviour. |                  |            |  |

| Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                      | 2   | 1   | -   | -   | -   | -   | 3   | 1   | 1   | 1    | -    | 1    | -    | -    |
| CO2                                                                                      | 2   | 1   | _   | -   | -   | _   | 1   | 1   | 2   | 3    | -    | 2    | 2    | -    |
| CO3                                                                                      | 2   | 1   | I   | -   | -   | I   | 1   | 1   | 1   | 1    | -    | 2    | -    | -    |
| CO4                                                                                      | 2   | 1   | -   | -   | -   | -   | 1   | 1   | 1   | 1    | -    | 2    | -    | 2    |
| CO5                                                                                      | 2   | 1   | -   | -   | -   | 2   | 1   | 1   | 2   | 1    | -    | 2    | -    | -    |

### **Course Guidelines**

Students will be awarded with credits / grades based upon his or her participation in events or/and contribution in various membership committees outside of departmental associations such as IEEE students' chapter, IETE, SAE, e-Baja, M-Baja, ISTE, Annual Social Gathering, Sports, Hackathon, Project/Poster Competition, NSS etc.

### The following list of activities is for reference to choose from

- Outdoor Activities
- Indoor Activities
- Skill Based Activities
- Cultural Activities
- Sports Activities
- Social Activities
- Technical Activities

The Rubrics for the grades and marks will be different depending on the activities enlisted.
|                                                                                                                                                                                              | MC322: PCB                                                           | DESIGN                  |                 |                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|-----------------|----------------|--|--|--|--|--|--|
| Teaching                                                                                                                                                                                     | g Scheme                                                             | <b>Examination Sche</b> | me              |                |  |  |  |  |  |  |
| Lecture                                                                                                                                                                                      | s: 01 Hrs./Week                                                      | End-Sem Exam:           | PASS            | S / FAIL       |  |  |  |  |  |  |
| Credits:                                                                                                                                                                                     | Non-Credit                                                           | Total:                  | NA              |                |  |  |  |  |  |  |
| -                                                                                                                                                                                            | <b>isite Course</b><br>puter or Laptop with any operating system and | d the Software that w   | vill be used to | create the PCB |  |  |  |  |  |  |
| Course                                                                                                                                                                                       | Objectives                                                           |                         |                 |                |  |  |  |  |  |  |
| <ol> <li>Predict and verify the behaviour and performance of the circuit before implementing it.</li> <li>Allows us to evaluate, compare and optimize alternative designs, plans.</li> </ol> |                                                                      |                         |                 |                |  |  |  |  |  |  |
| Course                                                                                                                                                                                       | Outcomes (COs):                                                      |                         |                 |                |  |  |  |  |  |  |
| After suc                                                                                                                                                                                    | ccessful completion of the course, student wil                       | l be able to            |                 |                |  |  |  |  |  |  |
|                                                                                                                                                                                              | Course Outcome (s)                                                   |                         | Bloom's         | s Taxonomy     |  |  |  |  |  |  |
|                                                                                                                                                                                              |                                                                      |                         | Level           | Descriptor     |  |  |  |  |  |  |
| CO1                                                                                                                                                                                          | Simulate and perform various analyses for t Electronic Circuit.      | the given               | 3               | Applying       |  |  |  |  |  |  |
| CO2                                                                                                                                                                                          | Design a PCB Layout for the given circuit.                           |                         | 4               | Analysing      |  |  |  |  |  |  |
| CO3                                                                                                                                                                                          | Fabricate the PCB and assemble the compo                             | nents.                  | 2               | Understand     |  |  |  |  |  |  |
| CO4                                                                                                                                                                                          | Existing circuit designs can be customised a requirement.            | as per the              | 3               | Applying       |  |  |  |  |  |  |

|     | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 1                                                                                        | 2   | 3   | -   | 3   | -   | -   | -   | 2   | -    | -    | 2    | 3    | 3    |
| CO2 | 1                                                                                        | 2   | 3   | -   | 3   | -   | -   | -   | 2   | -    | -    | 2    | 3    | 3    |
| CO3 | 1                                                                                        | 2   | 3   | -   | 3   | -   | -   | -   | 2   | -    | -    | 2    | 3    | 3    |
| CO4 | 1                                                                                        | 2   | 3   | -   | 3   | -   | -   | -   | 2   | -    | -    | 2    | 3    | 3    |

#### **Course Contents**

Simulation of electronic circuit uses mathematical models to get the actual behaviour of the printed circuit board or electronic devices. Simulation software allows for modelling of electronic circuit operation. Simulation allows designers to stay within a budget. Any part of the printed circuit board can be analysed. Simulation models can be used both for Analog devices and for digital electronic components testing. PCB simulation software applies mathematical models to predict board operation.

The free and/or open source electronic circuit simulation software on this page allows you to design, analyse and test a circuit virtually in a browser or on a computer. They simulate the behaviour of an electronic device/circuit, and are often used because it is cheaper, quicker and often more practical to simulate a circuit than to physically build one. The programs below may provide either Analog or digital simulation capabilities Proteus, Easy EDA electronic circuit design, circuit simulation and PCB design Do Circuits are some of the simulation software's.

| Ex. No             | Introduction and List of Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.            | Cos         |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--|--|
| 1                  | Introduction to the software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2               | CO1         |  |  |
| 2                  | Design and simulation of Voltage regulator(78XX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               | CO2         |  |  |
| 3                  | Design and simulation of Half wave rectifier using 1N4001 and its implementation on PCB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               | CO3,<br>CO4 |  |  |
| 4                  | Design and simulation of Full wave Bridge rectifier using 1N4001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               | CO2         |  |  |
| 5                  | Design and simulation of Single Stage CE Amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1               | CO2         |  |  |
| 6                  | 6 Design and simulation of Op-Amp as Inverting and Non-Inverting<br>Amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |             |  |  |
| 7                  | Design and simulation of Half Adder circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1               | CO2         |  |  |
| 8                  | Design and simulation of 1N4001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               | CO2         |  |  |
| <b>Text Books:</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |             |  |  |
|                    | Franco, 'Design with Op-Amps and Analog Integrated Circuits', TMH.<br>Mottershed, 'Electronic Devices & Circuits', PHI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |             |  |  |
| E-References       | i de la constante de |                 |             |  |  |
| https://docs.ea    | asyeda.com/en/Simulation/Chapter4-Introduction-to-using-a-simulator/inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>lex.html</u> |             |  |  |
| https://www.p      | cbway.com/blog/PCB_Design_Tutorial/How_to_Design_PCB_in_Proteu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>s_1.html</u> |             |  |  |



# SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)



DEPARTMENT OF ELECTRICAL ENGINEERING COURSE STRUCTURE - 2020 PATTERN FINAL YEAR B. TECH Academic Year 2023-24

# SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)



# **DEPARTMENT OF ELECTRICAL ENGINEERING**

**Profile:** The Electrical Engineering degree program offer the graduates to enter a dynamic and rapidly changing field with career opportunities in Electric Power System, Power Electronics, Robotics and Control, Microprocessors and Controllers, Integrated Circuits, Computer Software. The demand for electrical power and electronic systems is increasing rapidly and electrical engineers are in great demand to meet the requirements of the growing industry. Electrical Engineers are mainly employed in industries using Electrical Power, Manufacturing Electrical Equipment, Accessories, Electronic Systems, Research and Development departments which work on energy saving devices and Software Development.

Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, electromagnetic and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, Artificial Intelligence, mechatronics, and electrical materials science. Identifying these areas today's Electrical Engineer needs to have the capacity of adaptability and creativity in these new technical eras, to meet the industry 4.0.

Electrical Engineering Department of Sanjivani College of Engineering offers the B. Tech. course in Electrical Engineering with an intake of 60 students. The department has well qualified and dedicated faculty and is known for its high academic standards, well-maintained discipline, and complete infrastructure facilities.

## **Vision of Department**

To produce quality electrical engineers with the knowledge of latest trends, research technologies to meet the developing needs of industry & society

# **Mission of Department**

- M1: To impart quality education through teaching learning process
- M2: To establish well-equipped laboratories to develop R&D culture in contemporary and sustainable technologies in Electrical Engineering
- M3: To produce Electrical Engineering graduates with quest for excellence, enthusiasm for continuous learning, ethical behavior, integrity and nurture leadership

# **Program Outcomes (POs):**

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, society, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

- 6. **The engineer and society:** Apply reasoning in formed by the contextual knowledge to assess social, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply the set of one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# **Program Educational Objectives (PEOs)**

The PEOs of undergraduate programme in Electrical Engineering are broadly classified as follows:

- 1. **PEO 1:** Equip the student to analyze and solve real world problems to face the challenges of future.
- 2. **PEO 2:** Pursue higher education, research in Electrical Engineering or other allied fields of their interest for professional development.
- 3. **PEO 3:** Exhibit the leadership skills and ethical value for society

# **Program Specific Objectives (PSOs)**

- 1. **PSO 1:** Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronics circuits, control systems, electrical machines and Power system.
- 2. PSO 2: Apply the appropriate modern engineering hardware, and software tools in electrical engineering to engage in life-long learning and to successfully adapt in multi-disciplinary environments.

#### **COURSE STRUCTURE- 2020 PATTERN** FINAL YEAR B. TECH. ELECTRICAL ENGINEERING

#### **SEMESTER-VII**

|          | Co        | ourse                                                                                                                                                         | J      |   |        | Scheme<br>week |         | Ev                | valuat  | ion Sc  | heme   | -Mark  | (S            |
|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--------|----------------|---------|-------------------|---------|---------|--------|--------|---------------|
| Cat.     | Code      | Title                                                                                                                                                         | L      | Т | Р      | Credit<br>s    | IS<br>E | Theory<br>ES<br>E | C<br>A  | O<br>R  | P<br>R | T<br>W | Total         |
| РСС      | EE401     | Switch Gear and<br>Protection                                                                                                                                 | 3      | - | -      | 3              | 30      | 50                | 20      | -       | -      | -      | 100           |
| РСС      | EE402     | Control System<br>Design                                                                                                                                      | 3      | - | -      | 3              | 30      | 50                | 20      | -       | -      | -      | 100           |
| РСС      | EE403     | High Voltage<br>Engineering                                                                                                                                   | 3      | - | -      | 3              | 30      | 50                | 20      | -       | -      | -      | 100           |
| PEC      | EE404     | Professional<br>Elective- III<br>A. Electric and<br>Hybrid Vehicle<br>B. HVDC<br>Transmission<br>Systems<br>C. Digital Signal<br>Processing                   | 4      | - | -      | 4              | 30      | 50                | 20      | -       | -      | -      | 100           |
| PEC      | EE405     | Professional<br>Elective-IV<br><b>A.</b> Power<br>Quality<br><b>B.</b> Transmission<br>and Distribution<br><b>C.</b> Intelligent<br>Systems with AI<br>and ML | 3      | - | -      | 3              | 30      | 50                | 20      | -       | -      | -      | 100           |
| LC       | EE406     | Switch Gear and<br>Protection<br>Laboratory                                                                                                                   | -      | - | 2      | 1              | -       | -                 | -       | 50      | -      | -      | 50            |
| LC       | EE407     | Control System<br>Design<br>Laboratory                                                                                                                        | -      | - | 2      | 1              | -       | -                 | -       | 50      | -      | -      | 50            |
| LC       | EE408     | High Voltage<br>Engineering<br>Laboratory                                                                                                                     | -      | - | 2      | 1              | -       | -                 | -       | -       | 50     | -      | 50            |
| PRO<br>J | EE409     | Project Stage I                                                                                                                                               | -      | - | 6      | 3              | -       | -                 | -       | 50      | -      | 100    | 150           |
| MLC      | MC41<br>0 | Mandatory<br>Learning<br>Course-VII<br>A. Financially<br>Smart                                                                                                | 1      | - | -      | Non<br>Credit  | -       | -                 | -       | -       | -      | -      | Pass/Fai<br>l |
|          |           | Total                                                                                                                                                         | 1<br>7 | - | 1<br>2 | 22             | 150     | 250               | 10<br>0 | 15<br>0 | 50     | 100    | 800           |



#### **EE401: SWITCHGEAR AND PROTECTION**

| Teaching Scheme |             | <b>Examination Scheme</b> |           |
|-----------------|-------------|---------------------------|-----------|
| Lectures:       | 3 Hrs./Week | Continuous Assessment:    | 20 Marks  |
| Tutorial:       | Hr/Week     | In-Sem Exam:              | 30 Marks  |
|                 |             | End-Sem Exam:             | 50 Marks  |
| Credits:        | 03          | Total:                    | 100 Marks |

#### **Prerequisite Course:**

1. Power system

#### **Course Objectives**

- 1. To educate the causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.
- 2. To introduce the characteristics and functions of relays and protection schemes.
- 3. To impart knowledge on apparatus protection
- 4. To introduce static and numerical relays
- 5. To impart knowledge on arc formation.
- 6. To impart knowledge on functioning of circuit breakers

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                         | Bloom's | a Taxonomy |
|-----|----------------------------------------------------------------------------------------------------------------------------|---------|------------|
|     |                                                                                                                            | Level   | Descriptor |
| CO1 | Identify the various types of faults in Power system and discuss the needs of protective devices.                          | 3       | Apply      |
| CO2 | Illustrate the operations and applications of various types of protective relays with its characteristics in power system. | 2       | Understand |
| СО3 | Describe the various schemes employed for apparatus protection in power system                                             | 2       | Understand |
| CO4 | Elucidate the importance of numerical and static relays in power system                                                    | 2       | Understand |
| CO5 | Demonstrate the arc interruption and analyze the RRRV in circuit breakers                                                  | 2       | Understand |
| CO6 | Illustrate the different types of circuit breakers in power system.                                                        | 2       | Understand |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 2                                                                                        | 1   | 2   | 1   | 1   | 2   | -   | -   | -   | -    | -    | 1    | 3    | 1    |
| CO2   | 2                                                                                        | 2   | 3   | 1   | 1   | 2   | -   | -   | -   | -    | -    | 1    | 3    | 1    |
| CO3   | 2                                                                                        | 2   | 3   | 2   | 1   | 2   | -   | -   | -   | -    | -    | 1    | 3    | 1    |
| CO4   | 2                                                                                        | 2   | 3   | 2   | 1   | 2   | -   | -   | -   | -    | -    | 1    | 3    | 1    |
| CO5   | 2                                                                                        | 2   | 3   | 2   | 1   | 2   | -   | -   | -   | -    | -    | 1    | 3    | 1    |
| CO6   | 2                                                                                        | 2   | 2   | 1   | 1   | 2   | -   | -   | -   | _    | -    | 1    | 3    | 1    |

|        | Course Contents     |      |     |
|--------|---------------------|------|-----|
| UNIT-I | PROTECTIVE RELAYING | Hrs. | COs |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Principles and need for protective schemes – nature and causes of faults – types of faults – fault current calculation using symmetrical components – Methods of Neutral grounding – Zones of protection and essential qualities of protection – Protection schemes.                                         | 8        | 1        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--|--|--|--|--|--|
| UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELECTROMAGNETIC RELAYS                                                                                                                                                                                                                                                                                       | Hrs.     | CO       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Operating principles of relays - the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Overcurrent, Directional, Distance, Differential, Negative sequence and Under frequency relays.                                                                                              | 10       | 2        |  |  |  |  |  |  |
| UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPARATUS PROTECTION                                                                                                                                                                                                                                                                                         | Hrs.     | CO       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current transformers and Potential transformers and their applications in protection schemes - Protection of transformer, generator, motor, busbars and transmission line.                                                                                                                                   | 8        | 3        |  |  |  |  |  |  |
| UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATIC RELAYS AND NUMERICAL PROTECTION                                                                                                                                                                                                                                                                       | Hrs.     | СО       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Static relays – Phase, Amplitude Comparators – Synthesis of various relays using<br>Static comparators – Block diagram of Numerical relays – Overcurrent protection,<br>transformer differential protection, distant protection of transmission lines                                                        | 8        | 4        |  |  |  |  |  |  |
| UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FUNDAMENTALS OF ARC INTERRUPTIONS                                                                                                                                                                                                                                                                            | Hrs.     | CO       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ionization of gases, deionization, ARC Formation - DC and AC circuit breaking –<br>Current interruption in AC circuit breakers- Transient recovery voltage (TRV) –<br>derivation of rate of rise of TRV - resistance switching - current chopping - interruption<br>of capacitive current.                   | 8        | 5        |  |  |  |  |  |  |
| UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIRCUIT BREAKERS                                                                                                                                                                                                                                                                                             | Hrs.     | CO       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Types of circuit breakers – Air blast, Air break, Oil, SF6 and vacuum circuit breakers – Comparison of different circuit breakers – Rating and selection of Circuit breakers.                                                                                                                                | 7        | 6        |  |  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |          |          |  |  |  |  |  |  |
| 93873947<br>[T2]. M.L.Soni<br>Co.,Jan 2                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rao, "Switchgear and Protection", Khanna Publishers, New Delhi, 14 <sup>th</sup> Edition, 20728<br>, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, "A Text Book on Power System Engineering"<br>016, ISBN : 9788177000207<br>I. Horowitz, Arun G. Phadke , Power System Relaying, John Wiley, 2014, ISBN: 978-0-4 | , Dhanpa | ıt Rai & |  |  |  |  |  |  |
| <b>References:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |          |          |  |  |  |  |  |  |
| <ul> <li>[R1] Badri Ram, D. N. Vishwakarma, "Power System Protection and Switchgear" Tata McGraw Hill Publishing Co. Ltd., 3<sup>rd</sup> edition, 2022, ISBN: 978-9355322852</li> <li>[R2] H Lee Blackburn, "Protective Relaying- Principles and Applications", Dekker Publications, 3<sup>rd</sup> edition, 2007, ISBN: 978-0-9568678-0-3</li> <li>[R3] Mason C.R., "Art and Science of Protective Relaying", Wiley Eastern Limited, 1996, ISBN: 978-0471575528</li> </ul> |                                                                                                                                                                                                                                                                                                              |          |          |  |  |  |  |  |  |
| <b>E-References</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |          |          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m Protection and Switchgear (IIT Roorkee)<br>ve.nptel.ac.in/courses/108/107/108107167/                                                                                                                                                                                                                       |          |          |  |  |  |  |  |  |

| reaching S                  | cheme Examination Scher                                                                                                                                                                                                                                          | ne               |                            |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|--|
| Lectures:                   | 03 Hrs./Week Continuous Assess                                                                                                                                                                                                                                   | nent:            | 20 Marks                   |  |
| Tutorial:                   | Hr/Week In-Sem Exam:                                                                                                                                                                                                                                             |                  | 30 Marks                   |  |
|                             | End-Sem Exam:                                                                                                                                                                                                                                                    |                  | 50 Marks                   |  |
| Credits:                    | 03 Total:                                                                                                                                                                                                                                                        |                  | 100 Marks                  |  |
| 1. Co<br>2. Ma              | ite Course:<br>ntrol System Engineering<br>atrix Algebra, Z-transform, and Laplace transform                                                                                                                                                                     |                  |                            |  |
| Course Ob                   | jectives                                                                                                                                                                                                                                                         |                  |                            |  |
| 3. Ma<br>4. Ur<br>Course Ou | evelop skills for analysing nonlinear systems.<br>ake students study features and configurations of digital control systems.<br>aderstand the practical controllers and compensators<br>tcomes (COs):<br>ssful completion of the course, student will be able to |                  |                            |  |
|                             | Course Outcome (s)                                                                                                                                                                                                                                               | Bloom's Taxonomy |                            |  |
|                             |                                                                                                                                                                                                                                                                  | Level            | Descriptor                 |  |
|                             | Identify the various nonlinearities and their behaviour observed in real                                                                                                                                                                                         | 2                |                            |  |
| CO1                         | world                                                                                                                                                                                                                                                            |                  | Understanding              |  |
| CO1<br>CO2                  |                                                                                                                                                                                                                                                                  | 4                | Understanding<br>Analysing |  |
|                             | world                                                                                                                                                                                                                                                            | 4 3              |                            |  |
| CO2                         | world Analyse the system using state space approach                                                                                                                                                                                                              |                  | Analysing                  |  |
| CO2<br>CO3                  | world         Analyse the system using state space approach         Apply controllability and observability tests on the system                                                                                                                                  | 3                | Analysing<br>Applying      |  |

| Mappir | Apping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|-----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                     | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 2                                                                                       | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO2    | 2                                                                                       | 3   | 2   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO3    | 2                                                                                       | 3   | 2   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO4    | 2                                                                                       | 3   | 3   | 3   | 2   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO5    | 2                                                                                       | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO6    | 2                                                                                       | 3   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 1    | 2    | 2    |

|         | Course Contents                                                                                                                                                                                                                                                            |      |     |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|--|--|--|--|
| UNIT-I  | Nonlinear Control Systems                                                                                                                                                                                                                                                  | Hrs. | COs |  |  |  |  |  |  |  |
|         | Introduction to nonlinear systems, common nonlinearities, describing function method, describing function of an ideal relay, stability analysis with describing function, introduction to Lyapunov stability analysis (basic concepts, definitions, and stability theorem) | 06   | CO1 |  |  |  |  |  |  |  |
| UNIT-II | Introduction to State-Space                                                                                                                                                                                                                                                | Hrs. | CO  |  |  |  |  |  |  |  |

|                                                                                 | Concept of state, state-space representation of dynamical systems in physical variable form, phase variable forms and Jordon / diagonal canonical form, conversion of the transfer function to state-space model and vice versa, state equation and its solution, state transition matrix and its properties, computation of state transition matrix by Laplace transform and Caley Hamilton method. | 08                          | CO2   |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|
| UNIT-III                                                                        | State-Space Design                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.                        | CO    |
|                                                                                 | The concept of controllability and observability, Kalman's and Gilbert's tests for controllability<br>and observability, effect of pole-zero cancellation, duality property, control system design using<br>pole-placement using transformation matrix, direct substitution, and Ackermann's formula,<br>State observers, design of a full- order observer.                                          | 08                          | CO3   |
| UNIT-IV                                                                         | Introduction to Digital Control System                                                                                                                                                                                                                                                                                                                                                               | Hrs.                        | CO    |
|                                                                                 | Basic block diagram of the digital control system, sampling and reconstruction, Shannon's Sampling theorem, zero-order hold and its transfer function, First-order hold (no derivation), characteristics equation, mapping between s-plane and z-plane, stability analysis in z-plane.                                                                                                               | 06                          | CO4   |
| UNIT-V                                                                          | P, I and D Controllers                                                                                                                                                                                                                                                                                                                                                                               | Hrs.                        | CO    |
|                                                                                 | Introduction to Proportional (P), Integral (I) & Derivative (D)controller, individual effect on overall system performance, P-PI & PID control and effect on overall system performance, Numerical examples.                                                                                                                                                                                         | 08                          | CO5   |
| UNIT-VI                                                                         | Compensator Design in Frequency Domain                                                                                                                                                                                                                                                                                                                                                               | Hrs.                        | CO    |
|                                                                                 | Approach to control system design, cascade compensation networks, phase-lead and phase-lag compensator designs using bode plot, physical realization of compensators.                                                                                                                                                                                                                                | 06                          | CO6   |
| Text Books                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |                             |       |
| [T2]. Rich.<br>[T3]. Benj.<br>[T4]. I. J. I<br>2021, IS<br>[T5]. A. N<br>938939 |                                                                                                                                                                                                                                                                                                                                                                                                      | 407623<br>686209<br>Publish |       |
| References                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |                             |       |
| [R1] M. C<br>[R2] B. C                                                          | Gopal, "Control Systems: Principles and Design", 4th Ed. McGraw Hill Education, 2012, ISBN 97<br>. Kuo, "Automatic Control System", 9th Ed., Prentice Hall, 2014, ISBN 9788126552337                                                                                                                                                                                                                 | 800713                      | 33269 |
| E-Resource                                                                      | s:                                                                                                                                                                                                                                                                                                                                                                                                   |                             |       |
| (http<br>[E2] NC                                                                | ntrol Engineering, IIT Delhi by Prof. M. Gopal<br>s://nptel.ac.in/courses/108102043)<br>IC:Nonlinear and Adaptive Control, IIT Delhi by Prof. Shubhendu Bhasin<br>s://nptel.ac.in/courses/108102113)                                                                                                                                                                                                 |                             |       |

CO6

and cueernt.

### **EE403: HIGH VOLTAGE ENGINEERING**

| Teaching SchemeExamination SchemeLectures:03 Hrs./WeekContinuous Assessment:                                   |                         |
|----------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                |                         |
|                                                                                                                | 20 Marks                |
| Tutorial: Hrs./Week In-Sem Exam:                                                                               | 30 Marks                |
| End-Sem Exam:                                                                                                  | 50 Marks                |
| Credits: 03 Total:                                                                                             | 100 Marks               |
| Prerequisite Course: Atomic and molecular structure of gaseous and solid materials, basic prope                | rties of conductors and |
| insulators, knowledge of Electrical Engineering Materials.                                                     |                         |
| Course Objectives                                                                                              |                         |
| 1. To enable students to know and compare the various processes of breakdown in solid, liqu                    | id and gaseous          |
| dielectric materials ·                                                                                         | -                       |
| 2. To enable students, understand and apply various methods of generation and measurement                      | t of DC, AC, impulse    |
| voltage and current.                                                                                           |                         |
| 3. To enable students to know the charge formation and separation phenomenon in clouds, c                      | auses of overvoltage    |
| and lightening phenomenon ·                                                                                    |                         |
| 4. To develop ability among learners to execute testing on various high voltage equipment's                    |                         |
| 5. To introduce students to the design, layout, safety precautions, earthing, and shielding of H               | IV laboratory.          |
| Course Outcomes (COs):                                                                                         |                         |
|                                                                                                                | Bloom's Taxonomy        |
|                                                                                                                | Level Descriptor        |
| CO1 Identify, describe the breakdown theories of gaseous materials.                                            | 2 Understan             |
|                                                                                                                | d                       |
| CO2 Identify, describe the breakdown theories of liquid materials.                                             | 2 Understan             |
|                                                                                                                | d                       |
| CO3 Identify, describe the breakdown theories of solid materials.                                              | 2 Understan             |
|                                                                                                                | d                       |
|                                                                                                                |                         |
| CO4         Describe as well as use different methods of generation of high AC, DC,                            | 2 Understan             |
| CO4     Describe as well as use different methods of generation of high AC, DC, impulse voltage and current.   | 2 Understan<br>d        |
| CO4 Describe as well as use different methods of generation of high AC, DC,<br>impulse voltage and current.    |                         |
| CO4       Describe as well as use different methods of generation of high AC, DC, impulse voltage and current. | d                       |

| Mappir | ng of C | ourse | Outcom | nes to Pro | gram C | Outcom | es (POs) | & Progra | um Speci | fic Outco | mes (PSO | s):  |      |      |
|--------|---------|-------|--------|------------|--------|--------|----------|----------|----------|-----------|----------|------|------|------|
|        | PO1     | PO2   | PO3    | PO4        | PO5    | PO6    | PO7      | PO8      | PO9      | PO10      | PO11     | PO12 | PSO1 | PSO2 |
| CO1    | 3       | 3     | 1      | -          | 2      | 2      | 1        | -        | -        | 1         | 1        | 1    | 3    | 1    |
| CO2    | 3       | 3     | 2      | 1          | 2      | 2      | 1        | -        | -        | 1         | 1        | 1    | 3    | 1    |
| CO3    | 3       | 3     | 1      | 1          | 1      | 2      | 1        | -        | -        | 1         | 1        | 1    | 3    | 1    |
| CO4    | 2       | 2     | 1      | 1          | 1      | -      | 1        | -        | -        | -         | 1        | 1    | 3    | 1    |
| CO5    | 2       | 2     | 1      | 2          | 1      | -      | 1        | -        | -        | -         | 1        | 1    | 3    | 1    |
| CO6    | 2       | 3     | 1      | -          | 1      | -      | 1        | -        | -        | -         | 1        | 1    | 3    | 1    |

|         | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I  | BREAKDOWN IN GASES DIELECTRICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | COs |
|         | Ionization process in gas, Townsend's Theory, current growth equation in presence of primary and secondary ionization processes, Townsend's breakdown criterion, primary and secondary ionization coefficients, limitations of Townsend's theory, Streamer mechanism of breakdown, Paschen's Law and its limitations, Corona discharges for point plane electrode combination with positive and negative pulse application, time lag and factors on which time lag depends. (Numerical on Townsend's theory and Paschen's law). | 06   | 01  |
| UNIT-II | BREAKDOWN IN LIQUID DIELECTRICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs. | CO  |
|         | Pure and commercial liquids, Different breakdown theories: Breakdown in Pure liquid<br>and breakdown in commercial liquids: Suspended Particle theory, Cavitations and<br>bubble theory, Thermal mechanism of breakdown and Stressed Oil volume theory.                                                                                                                                                                                                                                                                         | 06   | 02  |

Sanjivani College of Engineering, Kopargaon

d

|                                            | (Numerical on theories of liquid dielectric materials)                                                                                                                                                                                                                                                                                                                                                                   |                         |              |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
| UNIT-III                                   | BREAKDOWN IN SOLID DIELECTRICS                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.                    | CO           |
|                                            | Intrinsic breakdown: electronic breakdown, avalanche or streamer breakdown, electro-<br>mechanical breakdown, thermal breakdown, treeing and tracking phenomenon,<br>Chemical and electrochemical breakdown, Partial discharge (Internal discharge),<br>Composite dielectric material, Properties of composite dielectrics, breakdown in<br>composite dielectrics. (Numerical on theories of solid dielectric materials) | 06                      | 03           |
| UNIT-IV                                    | GENERATION OF HIGH CURRENT AND VOLTAGES                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.                    | CO           |
|                                            | Generation of high ac voltages-Cascading of transformers, series and parallel<br>resonance system, Tesla coil. Generation of impulse voltages and current-Impulse<br>voltage definition, wave front and wave tail time, Multistage impulse generator,<br>Modified Marx circuit, Tripping and control of impulse generators, Generation of high<br>impulse current                                                        | 06                      | 04           |
| UNIT-V                                     | LIGHTNING AND SWITCHING OVER VOLTAGES                                                                                                                                                                                                                                                                                                                                                                                    | Hrs.                    | CO           |
|                                            | Causes of over voltages, lightning phenomenon, Different types of lightening strokes<br>and mechanisms of lightening strokes, Charge separation theories, Wilson theory,<br>Simpson theory, Reynolds and Mason theory, over voltage due to switching surges and<br>methods to minimize switching surges. Statistical approach of insulation coordination.                                                                | 06                      | 05           |
| UNIT-VI                                    | MEASUREMENT OF HIGH VOLTAGE AND HIGH CURRENTS                                                                                                                                                                                                                                                                                                                                                                            | Hrs.                    | CO           |
|                                            | Sphere gap voltmeter, electrostatic volt meter, generating voltmeter, peak reading voltmeter, resistive, capacitive and mixed potential divider, capacitance voltage transformer, cathode ray oscilloscope for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements.                                                                              | 06                      | 06           |
| 0-07-46<br>[T2] C. I                       | idu, V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill Publication Co. Ltd. Nev<br>52286-2<br>L. Wadhwa, "High Voltage Engineering", New Age International Pub<br>0: 8122418597 ISBN 13: 9788122418590                                                                                                                                                                                                           | w Delhi,<br>olishers    | ISBN<br>Ltd, |
| <b>References:</b>                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |              |
| 3634 3<br>[R2] Prof. D.                    | , W. S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication,<br>V. Razevig Translated from Russian by Dr. M. P. Chourasia, "High Voltage Engineer                                                                                                                                                                                                                                             |                         |              |
| [R3] Ravindra<br>81224                     |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |              |
| [R5] Subir Ray<br>[R6] IS 731-1<br>082474  |                                                                                                                                                                                                                                                                                                                                                                                                                          | 7404<br><b>SBN-13</b> : | 978-         |
| [R8] Pollution<br>[R9] High volt<br>ISBN 6 | :IS2099-1986, specification for bushings for A.C. Voltages > 1000 Volts, <i>ISBN</i> -13: 978-08 n test :IEC 60507-1991 on external and internal insulator, <i>ISBN</i> -10: 0824748093 rage test techniques, general definitions and test requirements: IS 2071(part 1) 1993, IEC Pu 50060-1:2010.                                                                                                                      |                         |              |
| <b>E-resources:</b>                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |              |
|                                            | ttps://archive.nptel.ac.in/courses/108/104/108104048/                                                                                                                                                                                                                                                                                                                                                                    |                         |              |

|          |       |                     |          | ]         | E <b>E40</b> 4 | A Ele    | ectric a       | and Hy     | ybrid V       | <b>ehicle</b>          |           |          |         |              |
|----------|-------|---------------------|----------|-----------|----------------|----------|----------------|------------|---------------|------------------------|-----------|----------|---------|--------------|
| Teachin  | g Sch | eme                 |          |           |                |          |                | Exam       | ination       | Scheme                 |           |          |         |              |
| Lecture  | 0     | eme                 |          | 04 Hr     | s./Wee         | k        |                |            |               | ssessmer               | nt:       |          | 20 Mar  | ks           |
| Tutoria  |       |                     |          |           | s./Wee         |          |                |            | m Exam        |                        |           |          | 30 Mar  |              |
|          |       |                     |          |           |                |          |                | End-S      | Sem Exa       | m:                     |           |          | 50 Mar  | ks           |
| Credits  | •     |                     |          | 04        |                |          |                | Total:     |               |                        |           |          | 100 Ma  | rks          |
| Prereq   |       | Course:             |          |           |                |          |                |            |               |                        |           |          |         |              |
| 1.       |       | c concept           |          | eries     |                |          |                |            |               |                        |           |          |         |              |
| 2.       |       | rical mot           |          |           |                |          |                |            |               |                        |           |          |         |              |
|          |       | er electro          | nic con  | version   |                |          |                |            |               |                        |           |          |         |              |
| Course   |       |                     |          | 6.4       | 1              | 1.       |                | 6.51       | · • • • • • • | 1 1 1 1 1 1            |           | 1 1      |         | 0 1 1 1      |
|          |       |                     |          |           |                |          |                |            |               |                        |           |          |         | ll vehicles. |
| 2.<br>3. |       |                     |          |           |                |          |                |            |               | c and Hy               |           |          | lagemen | t systems.   |
| J.<br>4. |       | assify the          |          |           |                |          |                |            |               |                        |           | leies    |         |              |
|          |       | omes (CC            |          |           | os una e       | ontrois  | used in        | ereetire   | venierei      | <i>.</i>               |           |          |         |              |
|          |       | ul compl            |          | f the cou | ırse. stu      | ident w  | ill be ab      | le to      |               |                        |           |          |         |              |
|          |       | 1                   |          |           |                | ome (s)  |                |            |               |                        |           | Bloom'   | s Taxon | omy          |
|          |       |                     |          |           |                |          |                |            |               |                        | Lev       |          |         | criptor      |
| CO1      | Re    | cognize ł           | nistory, | Social a  | and env        | vironme  | ntal im        | portance   | e of Hyb      | rid and                | 2         |          | Unde    | erstanding   |
|          |       | ectric veh          |          |           |                |          |                |            |               |                        |           |          |         | e            |
| CO2      |       | scribe the          |          |           |                |          | f energy       | / storage  | e systems     | 5                      | 2         |          |         | rstanding    |
| CO3      |       | alyze bat           |          |           |                |          |                |            |               |                        | 4         |          | An      | alysing      |
| CO4      |       | stinguish           | betwee   | n the p   | erforma        | ance an  | d archit       | tecture of | of variou     | is drive               | 2         |          | Unde    | rstanding    |
|          | trai  |                     | 1:00     | 4 T       |                |          | 1.0            | 4 1        | 1.0           | 1                      |           |          |         | 8            |
| CO5      |       | scribe th<br>nicles | diffe    | rent Ins  | strumen        | itation  | and Co         | ntrol us   | sed for       | electric               | 2         |          | Unde    | rstanding    |
| CO6      |       | derstand            | Indian   | and Glo   | hal Sce        | narios   | in Elect       | ric Vehi   |               |                        | 2         |          | Unde    | erstanding   |
|          |       |                     |          |           |                |          |                |            |               | ific Outc              | -         | $SO_{S}$ | Unde    | istanunig    |
| mapping  | PO    | PO2                 | PO3      | PO4       | PO5            | PO6      | PO7            | PO8        | PO9           | PO10                   | PO11      | PO12     | PSO     | PSO2         |
|          | 1     |                     |          |           |                |          |                |            | /             |                        |           |          |         |              |
| CO1      | 2     | -                   | -        | -         | -              | 1        | 3              | -          | -             | -                      | -         | 3        | -       | -            |
| CO2      | 2     | 2                   | -        | -         | -              | 1        | 3              | -          | -             | -                      | -         | 2        | -       | -            |
| CO3      | 2     | 3                   | -        | -         | -              | -        | 2              | -          | -             | -                      | -         | 3        | -       | -            |
| CO4      | 2     | 1                   | -        | -         | -              | -        | 2              | -          | -             | -                      | -         | 2        | -       | -            |
| CO5      | 2     | 2                   | -        | -         | -              | -        | 1              | -          | -             | -                      | -         | 2        | -       | -            |
| CO6      | 1     | -                   | -        | -         | 2              | 2        | 2              | -          | -             | -                      | -         | 3        | -       | -            |
|          |       | <b>T</b> / T        |          |           |                | (        | Course         | Conten     | ts            |                        |           |          |         | 60           |
| UNIT-I   |       | Introdu             |          | 4         |                | <b>a</b> | 4 - £ E1-      |            | 4             | rtation, C             |           | f        | Hrs.    | COs          |
|          |       |                     |          |           |                | 1        |                |            | -             | iel cell V             | 1         |          | 5       | CO1          |
|          |       | and envi            |          |           |                |          |                |            |               |                        | enicie. 5 | ociai    | 5       | 001          |
| UNIT-I   | [     | Energy              |          |           |                | 011190   | <u>ina ana</u> | Licetife   | venierei      |                        |           |          | Hrs.    | CO           |
|          |       |                     |          |           |                | require  | ements i       | in Hybri   | id and E      | lectric ve             | hicles, b | attery-  |         |              |
|          |       |                     |          |           |                |          |                |            |               | storage a              |           |          | 7       | CON          |
|          |       |                     |          |           | nergy s        | torage   | and its        | analysis   | , Flywhe      | el based               | energy s  | storage  | /       | CO2          |
|          |       | and its a           |          |           |                |          |                |            |               |                        |           |          |         |              |
| UNIT-I   | Ι     | Battery             |          |           |                |          |                |            |               |                        | ·         |          | Hrs.    | CO           |
|          |       |                     |          |           |                |          |                |            |               | y pack ch              |           |          |         |              |
|          |       |                     |          |           |                |          |                |            |               | ement uni              |           |          | C       | CON          |
|          |       |                     |          |           |                |          |                |            |               | nit, fault<br>I monito |           |          | 6       | CO3          |
|          |       | unit.               | 1 JUN, ( | commati   | 011 01 2       | oc, va   | uery Da        | ianonig,   |               |                        | ing of f  | Janel y  |         |              |
| UNIT-I   | V     | Hybrid              | and El   | ectric v  | ehicles        |          |                |            |               |                        |           |          | Hrs.    | CO           |
|          | •     |                     |          |           |                | ents. co | onfigura       | tion. pe   | erforman      | ce, tract              | ive effor | ts in    |         |              |
|          |       | normal o            |          |           |                |          |                |            |               | ,                      |           |          | ~       | COA          |
|          |       |                     |          |           |                |          |                |            |               | EV drive               | etrain (S | eries,   | 5       | CO4          |
|          |       | parallel            | and seri | es-para   | llel).En       |          |                |            |               |                        | `         |          |         |              |
| UNIT-V   | 7     | Drives a            | and con  | trol sys  | tems           |          |                |            |               |                        |           |          | Hrs.    | СО           |

Sanjivani College of Engineering, Kopargaon

| Drives: - Application of BLDC drives and Switched reluctance motor drive for HEV and EV, performance characteristics of drives. |           |             |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| Instrumentation and control system related to Hybrid and Electric vehicles, speed                                               | 7         | CO5         |
| control, acceleration characteristics, Electric steering, motion control, braking                                               |           |             |
| mechanism, IoT in Electric Vehicles                                                                                             |           |             |
| UNIT-VI Indian & Global Scenarios in Electric Vehicles                                                                          | Hrs.      | CO          |
| Technology Scenario, Recent developments and trends in electric vehicles (BYD,                                                  |           |             |
| Citroen EV, etc), Market Scenario, Policies & Regulations, Payback & Commercial                                                 |           |             |
| Model, Policies in India                                                                                                        | 6         | CO6         |
| Introduction to Vehicle to Home(V2H), Vehicle to Vehicle (V2V) and Vehicle to Grid                                              |           |             |
| (V2G) technologies (Descriptive)                                                                                                |           |             |
| *One Industrial Visit to any EV design and manufacturing company is mandatory.                                                  |           |             |
| Text Books:                                                                                                                     |           |             |
| [T1] James Larminie and John Lowry, "Electrical Vehicle", John Wiley and Sons, 2012.                                            |           |             |
| [T2] Ronald K. Jurgen, "Electric and Hybrid-Electric Vehicles", SAE International Publisher.                                    |           |             |
| [T3] K T Chau, "Energy Systems for Electric and Hybrid Vehicles", The institution of Engineeri                                  | ng and    | Technology  |
| Publication                                                                                                                     |           |             |
| [T4] D.A.J Rand, R Woods, R M Dell, "Batteries for Electric Vehicles", Research studies press Ltd, New                          | w York, . | John Willey |
| and Sons                                                                                                                        |           |             |
| [T5] Electric and Hybrid Vehicles-Design Fundamentals, CRC press                                                                |           |             |
| [T6] Mark Warner, The Electric Vehicle Conversion handbook –HP Books, 2011.                                                     |           |             |
| References:                                                                                                                     |           |             |
| [R1] Mehrdad Ehsani, Yimin Gao and Ali Emadi, "Modern Electrical Hybrid Electric and Fuel Cell                                  |           |             |
| Vehicles: Fundamental, Theory and design", CRC Press, 2009.                                                                     |           |             |
| [R2] "Automotive handbook 5 th edition", Robert Bosch, SAE international publication.                                           |           |             |
| E-References                                                                                                                    |           |             |
| [1] Junwei Lu, Jahangir Hossain,"Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid", IET                             |           |             |
| Digital Library                                                                                                                 |           |             |
| [2] Automobile Electrical and Electronic systems, Tom Denton, SAE International publications.                                   |           |             |
| [3] https://nptel.ac.in/courses/108/106/108106170/                                                                              |           |             |

### **EE404B: HVDC TRANSMISSION SYSTEMS**

| Teaching   | Scheme Examination                                                                                                                                                                                   | on Scheme         |                     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| Lectures:  | 04 Hrs./Week Continuous                                                                                                                                                                              | s Assessment:     | 20 Marks            |
| Tutorial:  | Hrs/Week In-Sem Exa                                                                                                                                                                                  | am:               | 30 Marks            |
|            | End-Sem E                                                                                                                                                                                            | xam:              | 50 Marks            |
| Credits:   | 04 Total:                                                                                                                                                                                            |                   | 100 Marks           |
| Prerequ    | isite Course: Power System-I, II, Control System-I & II, Power                                                                                                                                       | r Electronics     |                     |
| Course O   | bjectives                                                                                                                                                                                            |                   |                     |
| 2. т       | To introduce students with the concept of HVDC Transmission s<br>To familiarize the students with the HVDC converters and their<br>To expose the students to the harmonics and faults occur in the s | control system.   | 1                   |
| Course O   | outcomes (COs):                                                                                                                                                                                      |                   |                     |
| After succ | cessful completion of the course, student will be able to                                                                                                                                            |                   |                     |
|            | Course Outcome (s)                                                                                                                                                                                   |                   | Bloom's<br>Taxonomy |
|            |                                                                                                                                                                                                      | Level             | Descriptor          |
| CO1        | Understand the advantages of HVDC transmission over co transmission.                                                                                                                                 | nventional AC 2   | Understand          |
| CO2        | Formulate and solve mathematical problems related to rectific control methods.                                                                                                                       | er and inverter 3 | Apply               |
| CO3        | Analyze the operation of individual components within an H system.                                                                                                                                   | VDC converter 4   | Analyze             |
| CO4        | Explain the process of harmonics generation in power electro                                                                                                                                         | onic converters 2 | Comprehension n     |
| CO5        | Understand the nature of faults happening on both the AC as the converters.                                                                                                                          | nd DC sides of 2  | Understand          |
| CO6        | Understand and classify various types of Multiterminal systems, understanding their configurations, and ide                                                                                          |                   | Understand          |

| Mapping | g of Co | urse Ou | tcomes | to Prog | ram Ou | tcomes | (POs) & | & Progra | am Speci | fic Outco | omes (PS | Os): |      |      |
|---------|---------|---------|--------|---------|--------|--------|---------|----------|----------|-----------|----------|------|------|------|
|         | PO1     | PO2     | PO3    | PO4     | PO5    | PO6    | PO7     | PO8      | PO9      | PO10      | PO11     | PO12 | PSO1 | PSO2 |
| CO1     | 3       | 3       | 3      | 3       | 3      | 2      | -       | -        | -        | -         | 2        | 3    | 3    | 3    |
| CO2     | 3       | 3       | 3      | 3       | 3      | 2      | -       | -        | -        | -         | 3        | 3    | 3    | 3    |
| CO3     | 3       | 3       | 3      | 3       | 3      | 2      | -       | -        | -        | -         | 3        | 3    | 3    | 3    |
| CO4     | 3       | 3       | 3      | 3       | 3      | 2      | -       | -        | -        | -         | 3        | 3    | 3    | 3    |
| CO5     | 2       | 3       | 3      | 3       | 3      | 2      | -       | -        | -        | -         | 3        | 3    | 3    | 3    |
| CO6     | 3       | 3       | 3      | 2       | 3      | 2      | -       | -        | -        | -         | 3        | 3    | 3    | 3    |

|         | Course Contents                                                                                                                                                                                                                                                                                |      |     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT I  | INTRODUCTION                                                                                                                                                                                                                                                                                   | Hrs. | СО  |
|         | Introduction of DC power transmission technology, comparison of AC and DC transmission, limitation of HVDC transmission, reliability of HVDC systems, application of DC transmission, description of DC transmission system, planning for HVDC transmission, modern trends in DC transmission. | 6    | CO1 |
| UNIT II | ANALYSIS OF HVDC CONVERTERS                                                                                                                                                                                                                                                                    | Hrs. | СО  |

|                            | Choice of converter configuration, simplified analysis of Graetz circuit, converter bridge characteristics, Characteristics of a twelve-pulse converter, detailed analysis of converters.                                                                                                                                                                                                                                                                                                                              | 6         | CO2     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
| UNIT III                   | CONTROL OF HVDC CONVERTERS AND SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.      | СО      |
|                            | Necessity of control of a DC link, rectifier control, compounding of rectifiers, power reversal of DC link, voltage dependent current order limit(VDCOL) characteristics of the converter, inverter extinction angle control, pulse phase control, starting and stopping of DC link, constant power control, control scheme of HVDC converters                                                                                                                                                                         | 6         | CO3     |
| UNIT IV                    | HARMONICS AND FILTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.      | СО      |
|                            | Generation of harmonics by converters, characteristics of harmonics on DC side,<br>characteristics of current harmonics, characteristic variation of harmonic<br>currents with variation of firing angle and overlap angle, effect of control mode<br>on harmonics, non-characteristic harmonic. Use of filter, filter configuration,<br>design of band pass and high pass filter, protection of filters, DC filters, power<br>line communication and RI noise, filters with voltage source converter HDVC<br>schemes. | 8         | CO4     |
| UNIT V                     | FAULT AND PROTECTION SCHEMES IN HVDC SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.      | СО      |
|                            | Nature and types of faults, faults on AC side of the converter stations, converter faults, fault on DC side of the systems, protection against over currents and over voltages, protection of filter units                                                                                                                                                                                                                                                                                                             | 4         | C05     |
| UNIT VI                    | MULTITERMINAL HVDC SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs.      | СО      |
|                            | Types of multiterminal (MTDC) systems, parallel operation aspect of MTDC.<br>Control of power in MTDC. Multilevel DC systems. Power upgrading and<br>conversion of AC lines into DC lines, Parallel AC/DC systems, FACTS and<br>FACTS converters.                                                                                                                                                                                                                                                                      | 6         | CO6     |
| Text Books:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |
| [T2]. Power<br>[T3]. Power | AC ,HVDC Transmission & Distribution Engineering, S. Rao, Khanna Publication,<br>r System Stability and Control by PrabhaKundur, McGraw hill,ISBN NO 978-0-07-<br>r System Analysis: Operation and Control, AbhijitChakrabarti and SunitaHalder,<br>8120327772                                                                                                                                                                                                                                                         | 0635159   |         |
| References:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |
|                            | Voltage Direct Current Transmission, J. Arrillaga, Peter Pregrinu ISBN-10.0852969<br>C Power transmission system, K.R.Padiyar, Wiley Eastern Limited ISBN-13: 978-8                                                                                                                                                                                                                                                                                                                                                    |           |         |
| <b>E-References</b>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |
| -                          | EL :: Electrical Engineering - NOC:DC Power Tran<br>hive.nptel.ac.in/courses/108/106/108106160/<br>EL HIGH VOLTAGE DC TRANSMISSION https://nptel.ac.in/courses/108104013                                                                                                                                                                                                                                                                                                                                               | nsmission | Systems |

|                                                                     | EE404C: DIGITAL SIGNAL PROCESSIN                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| Teaching                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| Lectures                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 Marks                                                                                             |
| Practical                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Marks                                                                                             |
|                                                                     | End-Sem Exam:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 Marks                                                                                             |
| Credits:                                                            | 04 Total:                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Marks                                                                                            |
|                                                                     | iisite Course:<br>Knowledge of basic signals and systems                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| Course C                                                            | Dbjectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| 4. 7                                                                | To analyze DT signals with Z transform, inverse Z transform and DTFT<br>To describe Frequency response of LTI system                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| 4.<br>5.<br>6.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
| 4.<br>5.<br>6.                                                      | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to                                                                                                                                                                                                                               | Bloon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1's Taxonomy                                                                                         |
| 4.<br>5.<br>6.                                                      | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br>Dutcomes (COs):                                                                                                                                                                                                                                                                                                   | Bloon<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1's Taxonomy<br>Descriptor                                                                           |
| 4.<br>5.<br>6.                                                      | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                    |
| 4. 7<br>5. 6<br>6. 7<br><b>Course C</b><br>After suc                | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to<br><b>Course Outcome (s)</b><br>Identify various signals based of their characteristics and apply                                                                                                                             | Level<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Descriptor</b><br>Understanding                                                                   |
| 4. 7<br>5. 7<br>6. 7<br>Course C<br>After suc                       | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to<br><b>Course Outcome (s)</b><br>Identify various signals based of their characteristics and apply<br>sampling theorem                                                                                                         | <b>Level</b><br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Descriptor<br>Understanding<br>Applying                                                              |
| 4. 7<br>5. 7<br>6. 7<br>After suc<br>CO1<br>CO2                     | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to<br>Course Outcome (s)<br>Identify various signals based of their characteristics and apply<br>sampling theorem<br>Apply Z-transform and inverse Z transform on signals                                                        | Level<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Descriptor           Understanding           Applying           Applying                             |
| 4. 7<br>5. 7<br>6. 7<br>Course (<br>After succ<br>CO1<br>CO2<br>CO3 | To describe Frequency response of LTI system<br>To introduce Digital filters and analyze the response<br>To demonstrate DSP Applications in electrical engineering<br><b>Dutcomes (COs):</b><br>cessful completion of the course, student will be able to<br>Course Outcome (s)<br>Identify various signals based of their characteristics and apply<br>sampling theorem<br>Apply Z-transform and inverse Z transform on signals<br>Demonstrate various properties of Fourier Transform | Level         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>Descriptor         Understanding         Applying         Applying         Applying         Applying</td> | Descriptor         Understanding         Applying         Applying         Applying         Applying |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |    |    |     |     |    |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|----|----|-----|-----|----|-----|-----|-----|------|------|------|------|------|
|        | PO                                                                                       | PO | PO | PO4 | PO5 | PO | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|        | 1                                                                                        | 2  | 3  |     |     | 6  |     |     |     |      |      |      |      |      |
| CO1    | 3                                                                                        | 2  | 2  | 3   | 2   | -  | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO2    | 3                                                                                        | 2  | 1  | 1   | 2   | -  | -   | -   | I   | -    | -    | 1    | 2    | 2    |
| CO3    | 3                                                                                        | 2  | 2  | 1   | 2   | I  | -   | -   | I   | -    | -    | 1    | 2    | 2    |
| CO4    | 3                                                                                        | 2  | 2  | 2   | 2   | -  | -   | -   | -   | -    | -    | 1    | 2    | 2    |
| CO5    | 3                                                                                        | 2  | 1  | 2   | 2   | -  | -   | -   | -   | _    | -    | 1    | 2    | 2    |
| CO6    | 3                                                                                        | 2  | 1  | 2   | 2   | -  | -   | -   | -   | -    | -    | 1    | 2    | 2    |

|         | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |     |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--|--|--|--|--|--|--|
| UNIT-I  | Classification of Signals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.        | COs |  |  |  |  |  |  |  |
|         | Analog, Discrete-time and Digital signals, Basic sequences and sequence operations,<br>Discrete-time systems, Properties of D. T. Systems and Classification, Linear Time<br>Invariant Systems, impulse response, linear convolution and its properties, properties of<br>LTI systems: stability, causality, parallel and cascade connection, Linear constant<br>coefficient difference equations, Periodic Sampling, Sampling Theorem, Frequency<br>Domain representation of sampling, reconstruction of a band limited Signal, A to D<br>conversion Process: Sampling, quantization and encoding. | (06<br>Hrs) | CO1 |  |  |  |  |  |  |  |
| UNIT-II | Z-transform, Inverse Z-transform and its properties:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.        | СО  |  |  |  |  |  |  |  |

|                                                                                                                           | Unilateral Z-transform, Z transform properties: Linearity, time shifting, multiplication<br>by exponential sequence, differentiation, conjugation, time reversal, convolution, initial<br>value theorem, Inverse z transform by inspection, partial fraction, power series<br>expansion and complex inversion, solution of difference equation                                                                                     | (06<br>Hrs)              | CO2      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|--|--|--|--|--|
| UNIT-III                                                                                                                  | Discrete Time Fourier Transform :                                                                                                                                                                                                                                                                                                                                                                                                  |                          |          |  |  |  |  |  |
|                                                                                                                           | Representation of Sequences by Fourier Transform, Symmetry properties of D. T., F. T. theorems: Linearity, time shifting, frequency shifting, time reversal, differentiation, convolution theorem, Frequency response analysis of first and second order system, steady state and transient response                                                                                                                               | (06<br>Hrs)              | CO3      |  |  |  |  |  |
| UNIT-IV                                                                                                                   | Discrete Fourier Transform :                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs.                     | СО       |  |  |  |  |  |
|                                                                                                                           | Sampling theorem in frequency domain. The Discrete Fourier Transform, Relation with z transform Properties of DFT: Linearity, circular shift, duality, symmetry, Circular Convolution, Linear Convolution using DFT, Effective computation of DFT and FFT, DIT FFT, DIF FFT, Inverse DFT using FFT                                                                                                                                 | (06<br>Hrs)              | CO4      |  |  |  |  |  |
| UNIT-V                                                                                                                    | Frequency Response of LTI Systems:                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.                     | CO       |  |  |  |  |  |
|                                                                                                                           | Ideal frequency selective filters, Concept of filtering, specifications of filter, IIR filter<br>design from continuous time filters: Characteristics of Butterworth, and Cheybyshev low<br>pass filter, impulse invariant and bilinear transformation techniques, Design examples,<br>Basic structures for IIR Systems: direct form, cascade form                                                                                 | (06<br>Hrs)              | CO5      |  |  |  |  |  |
| UNIT-VI                                                                                                                   | FIR filter design using windows:                                                                                                                                                                                                                                                                                                                                                                                                   |                          |          |  |  |  |  |  |
|                                                                                                                           | specifications of properties of commonly used windows, Design Examples using<br>rectangular, and hanning windows. Basic Structures for FIR Systems: direct form.<br>Comparison of IIR and FIR Filters Applications: Measurement of magnitude and phase<br>of voltage, current, power, frequency and power factor correction, harmonic Analysis<br>and measurement, applications to machine control, DSP based protective relaying. | (06<br>Hrs)              | CO6      |  |  |  |  |  |
| Text Books:                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |          |  |  |  |  |  |
| [T2].         P. Ra           [T3].         Dr.S.           [T4].         W.Re           Springer 2           References: | kis J., Manolakis D., "Digital signal processing", 3rd Edition, Prentice Hall, ISBN 81-203-<br>mesh Babu, "Digital Signal Processing", 6th Edition Scitech Publication, isbn 8183716302<br>D. Apte,"Digital Signal Processing",2nd Edition Wiley India Pvt. Ltd ISBN: 978-81-265-<br>ebizant, J.Szafran, A.Wiszniewski, "Digital Signal Processing in Power system Protection a<br>2011 ISBN 978-0-85729-801-0                     | K<br>2142-5<br>and Contr |          |  |  |  |  |  |
| 044705-5<br>[R2]. A.V.                                                                                                    | A S., "Digital Signal Processing: A Computer Based Approach", Tata McGraw-Hill, 19<br>Oppenheim, R. W. Schafer, J. R. Buck, "Discrete Time Signal Processing", 2nd Edition Pres<br>17-0492-9                                                                                                                                                                                                                                       |                          |          |  |  |  |  |  |
| [R3]. Steve                                                                                                               | en W. Smith, "Digital Signal Processing: A Practical Guide for Engineers and Scientists", 1st 80750674447                                                                                                                                                                                                                                                                                                                          | Edition E                | lsevier, |  |  |  |  |  |
| <b>E-References</b>                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |          |  |  |  |  |  |
| Root Usin<br>[E2]. Hein<br>ASSP-35<br>[E3]. Oppe                                                                          | umi, N., Kobayashi, M., and Yokoyama, Y. "A New DSP-Oriented Algorithm for Calculating a Nonlinear Digital Filter," <i>IEEE Trans. on Signal Processing</i> , Vol. 40, No. 7, July 1992 en, P., and Neuvo, Y. "FIR-Median Hybrid Filters," <i>IEEE Trans. on Acoust. Speech, and S</i> , No. 6, June 1987.<br>enheim, A., Schafer, R., and Stockham, T. "Nonlinear Filtering of Multiplied and Convolved 1. 56, August 1968.       | ignal Pro                | oc., Vol |  |  |  |  |  |

[E4]. Pickerd, John. "Impulse-Response Testing Lets a Single Test Do the Work of Thousands," *EDN*, April 27, 1995

### EE405A: POWER OUALITY

|                                                                  | EE405A: POWER QUALITY                                                                  |                              |            |  |  |  |  |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|------------|--|--|--|--|--|--|--|
|                                                                  |                                                                                        | ~ .                          |            |  |  |  |  |  |  |  |
| Teaching S                                                       |                                                                                        |                              |            |  |  |  |  |  |  |  |
| Lectures:                                                        |                                                                                        | Continuous Assessment: 20 Ma |            |  |  |  |  |  |  |  |
| <b>Tutorial:</b>                                                 | Hrs./Week In-Sem Exan                                                                  |                              | 30 Marks   |  |  |  |  |  |  |  |
|                                                                  |                                                                                        | End-Sem Exam: 50 Ma          |            |  |  |  |  |  |  |  |
| Credits:                                                         | 03 Total:                                                                              |                              | 100 Marks  |  |  |  |  |  |  |  |
|                                                                  | ite Course:                                                                            |                              |            |  |  |  |  |  |  |  |
|                                                                  | wer Electronics, Power System Transients                                               |                              |            |  |  |  |  |  |  |  |
| <b>Course Ob</b>                                                 |                                                                                        |                              |            |  |  |  |  |  |  |  |
| 1.                                                               | To describe the types of power quality problem.                                        |                              |            |  |  |  |  |  |  |  |
| 2.                                                               | To analyze the concepts and mitigation of voltages sags/swells.                        |                              |            |  |  |  |  |  |  |  |
| 3. To study the sources and effect of harmonics in power system. |                                                                                        |                              |            |  |  |  |  |  |  |  |
| 4.                                                               | To impart knowledge on various methods of power quality monitoring                     |                              |            |  |  |  |  |  |  |  |
| 5.                                                               | To understand the concept of flexible AC transmission and the associ-                  | ated problems                |            |  |  |  |  |  |  |  |
| 6.                                                               | To understand the needs of custom power devices.                                       |                              |            |  |  |  |  |  |  |  |
|                                                                  | tcomes (COs):                                                                          |                              |            |  |  |  |  |  |  |  |
| After succes                                                     | ssful completion of the course, student will be able to                                |                              |            |  |  |  |  |  |  |  |
|                                                                  | Course Outcome (s)                                                                     |                              | s Taxonomy |  |  |  |  |  |  |  |
|                                                                  |                                                                                        | Level                        | Descriptor |  |  |  |  |  |  |  |
| CO1                                                              | Classify the various power quality events and international standards                  | 02                           | Understand |  |  |  |  |  |  |  |
| CO2                                                              | Predict the voltage sag problems and suggest preventive techniques.                    | 02                           | Understand |  |  |  |  |  |  |  |
| CO3                                                              | Discuss the various source of transient over voltages.                                 | 02                           | Understand |  |  |  |  |  |  |  |
| CO4                                                              | Classify the harmonic sources and the effects of harmonic distortion.                  | 02                           | Understand |  |  |  |  |  |  |  |
| CO5                                                              | Describe modern data acquisition systems and processing methods f condition monitoring |                              | Understand |  |  |  |  |  |  |  |
| CO6                                                              | Explain the basics in filter design to improve power quality.                          | 02                           | Understand |  |  |  |  |  |  |  |

| Mapping of Co | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|---------------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|               | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1           | 2                                                                                        | 2   | 2   | 2   | 1   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |
| CO2           | 2                                                                                        | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |
| CO3           | 2                                                                                        | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |
| CO4           | 3                                                                                        | 3   | 3   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |
| CO5           | 2                                                                                        | 3   | 3   | 3   | 3   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |
| CO6           | 3                                                                                        | 2   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 3    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | INTRODUCTION TO POWER QUALITY                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | COs |
|          | Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients – short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve. | 09   | 1   |
| UNIT-II  | VOLTAGE SAGS AND INTERRUPTIONS                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO  |
|          | Sources of sags and interruptions - estimating voltage sag performance-Area of Vulnerability, Equipment sensitivity to voltage sags, Transmission system sag performance evaluation, and Utility distribution system sag performance evaluation. Voltage sag due to induction motor starting - Estimation of the sag severity- Solution at the end user level.                                                                             | 09   | 2   |
| UNIT-III | OVERVOLTAGES                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO  |
|          | Sources of over voltages - Capacitor switching – lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection – shielding – line arresters - protection of transformers and cables. An introduction to computer analysis tools for transients, PSCAD and EMTP.                                                                                                | 09   | 3   |

| UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HARMONICS                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Harmonic sources from commercial and industrial loads - Locating harmonic sources –<br>Power system response characteristics - Harmonics Vs transients. Effect of harmonics<br>– Harmonic distortion - Voltage and current distortions - Harmonic indices - Inter<br>harmonics –Harmonic distortion evaluation, IEEE and IEC standards.                                                                                                                 | 09   | 4  |  |  |  |  |
| UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POWER QUALITY MONITORING                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs. | CO |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring considerations – Power quality measurement equipment - Harmonic /<br>spectrum analyzer - Flicker meters - Disturbance analyzer - Smart power quality<br>monitors - Applications of expert systems for power quality monitoring.                                                                                                                                                                                                              |      |    |  |  |  |  |
| UNIT- VI                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PASSIVE AND ACTIVE POWER COMPENSATORS                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Passive Compensators: Types of passive filters, single tuned and high pass filters, filter design criteria, double tuned filters, damped filters and their design.<br>Active Compensators: Compensation principle, classification of active filters by objective, system configuration, power circuit and control strategy.                                                                                                                             | 05   | 6  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |  |  |  |  |
| McGrav<br>[T2] J. Arrill<br>812653<br>[T3] Bhim Sing<br>2015, IS                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>[T1] Roger. C. Dugan, Mark. F. Mc Granagham, Surya Santoso, H.WayneBeaty, 'Electrical Power Systems Quality' McGraw Hill,2003, ISBN: 007138622X</li> <li>[T2] J. Arrillaga, N.R. Watson, S. Chen, "Power System Quality Assessment", New York : Wiley,2000, ISBN: 978-8126531745</li> <li>[T3] Bhim Singh, Ambrish Chandra, Kamal Al-Haddad," Power Quality Problems &amp; Mitigation Techniques" Wiley, 2015, ISBN: 978-1118922057</li> </ul> |      |    |  |  |  |  |
| References:                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |  |  |  |  |
| <ul> <li>[R1] G.T. Heydt, 'Electric Power Quality', West Lafayette, IN, Stars in a Circle Publications, 2nd Edition 1994, ISBN: 9789993587149</li> <li>[R2] M.H.J Bollen, 'Understanding Power Quality Problems: Voltage Sags and Interruptions', New York: IEEE Press, 1999, ISBN: 978-8126530397</li> <li>[R3] Arindam Ghosh, Gerard Ledwich, "Power Quality Enhancement Using Custom Power Devices", Springer US, 2002, ISBN:978-1402071805</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |  |  |  |  |
| E-resources:                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hive.nptel.ac.in/courses/108/102/108102179/ Power Quality<br>el.ac.in/courses/108107157 Power Quality Improvement Technique                                                                                                                                                                                                                                                                                                                             |      |    |  |  |  |  |

### **EE405B: TRANSMISSION AAND DISTRIBUTION**

| Teaching Sch       | neme                                                                             |           |          |            |          |          |          |          |         | nination  |                  |       |                       |       |  |
|--------------------|----------------------------------------------------------------------------------|-----------|----------|------------|----------|----------|----------|----------|---------|-----------|------------------|-------|-----------------------|-------|--|
| Lectures:          |                                                                                  |           |          |            | Hrs./W   |          |          |          |         | tinuous A |                  | ent:  |                       | Marks |  |
| Tutorial:          |                                                                                  |           |          | I          | Hr./Wee  | ek       |          |          |         | em Exan   |                  |       |                       | Marks |  |
|                    |                                                                                  |           |          | 02         |          |          |          |          |         | Sem Exa   | am:              |       | 50 Marks<br>100 Marks |       |  |
| Credits:           | Corre                                                                            |           |          | 03         |          |          |          |          | Tota    | 1:        |                  |       | 100                   | Marks |  |
| Prerequisite       |                                                                                  |           |          |            |          |          | 1 .      |          |         |           |                  |       |                       |       |  |
|                    | -                                                                                |           |          | material   | , basic  | power    | electror | nics swi | itches. |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          |            |          |          |          |          |         |           |                  |       |                       |       |  |
|                    | Objectives:<br>The course aims to impart the knowledge of the student in:        |           |          |            |          |          |          |          |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          | EHV and    |          |          |          |          |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          | e of elec  |          |          |          |          |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          | bution in  |          |          |          | cables   |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          |            |          |          |          |          |         | ht and ph | ase.             |       |                       |       |  |
|                    |                                                                                  |           |          | or the co  |          |          |          |          |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           |          |            |          |          |          |          |         | on syster | n.               |       |                       |       |  |
| <b>Course Outc</b> |                                                                                  |           |          |            |          |          |          |          |         |           |                  |       |                       |       |  |
| After success      | ful com                                                                          | pletion   |          |            |          |          | able to  |          |         |           |                  |       |                       |       |  |
|                    |                                                                                  |           | Co       | ourse Ou   | itcome   | (s)      |          |          |         |           | Bloom's Taxonomy |       |                       | ·     |  |
|                    |                                                                                  |           |          |            |          |          |          |          |         |           | Level Descript   |       |                       |       |  |
| CO1                |                                                                                  |           |          | ncepts of  |          |          |          |          |         |           | 2                |       | Understand            |       |  |
| CO2                |                                                                                  |           |          | ge of elec |          |          |          |          |         |           | 2                |       | Under                 | stand |  |
| CO3                | Understand the voltage distribution of EHV lines in insulator strings and cables |           |          |            |          |          |          |          | -       | 2         |                  | Under | stand                 |       |  |
|                    | Apply the mathematical approach to discuss the effect of corona while            |           |          |            |          |          |          |          |         |           |                  |       |                       |       |  |
| CO4                |                                                                                  |           | EHV      | lines al   | ong wi   | th con   | siderati | on of    | environ | mental    | 3                |       | Арр                   | ply   |  |
|                    | pollutio                                                                         |           | • •      |            |          |          |          | 1.       |         |           | -                |       | TT 1                  | . 1   |  |
|                    |                                                                                  |           |          | ent circui |          |          |          |          |         |           | 2                |       | Under                 |       |  |
| CO6                | Summa                                                                            | arize the | e opera  | tion of th | ne diffe | rent dis | tributio | on scher | nes.    |           | 2                |       | Under                 | stand |  |
| Mapping of C       | ourse O                                                                          | utcome    | s to Pro | ogram O    | utcome   | s (POs)  | & Pro    | gram S   | pecific | Outcome   | es (PSOs         | ):    |                       |       |  |
|                    | PO1                                                                              | PO2       | PO3      | PO4        | PO5      | PO6      | PO7      | PO8      | PO9     | PO10      | PO11             | PO12  | PSO1                  | PSO2  |  |
| CO1                | 2                                                                                | 102       | 2        | 2          | 2        | 100      | 107      | 100      | 2       | 1         | 1011             | 1012  | 2                     | 1502  |  |
|                    | -                                                                                |           |          |            |          | -        | -        | -        |         |           | -                | -     |                       | -     |  |
| CO2                | 3                                                                                | 3         | 3        | 3          | 2        | -        | -        | -        | 1       | 1         | -                | -     | 2                     | -     |  |
| CO3                | 2                                                                                | 3         | 3        | 2          | 2        | -        | -        | -        | -       | 1         | -                | -     | 2                     | -     |  |
| CO4                | 2                                                                                | 1         | 3        | 2          | 3        | -        | -        | -        | 1       | 1         | -                | 1     | 3                     | -     |  |

|          | Course Contents                                                                                                                                                                                                                                                                            |      |     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | TRANSMISSION LINE TRENDS AND PRELIMINARIES                                                                                                                                                                                                                                                 | Hrs. | COs |
|          | Structure of electric power system: generation, transmission and distribution; Types of AC and DC distributors – distributed and concentrated loads – interconnection – EHVAC and HVDC transmission - Introduction to FACTS                                                                | 06   | CO1 |
| UNIT-II  | ELECTRO STATIC FIELD                                                                                                                                                                                                                                                                       | Hrs. | CO  |
|          | Electrostatic field: calculation of electrostatic field of EHV/AC lines – Effect on humans, animals and plants – Electrostatic induction in un-energized circuit of double circuit line - Electromagnetic interference.                                                                    | 03   | CO4 |
| UNIT-III | EHV INSULATORS AND CABLES                                                                                                                                                                                                                                                                  | Hrs. | CO  |
|          | Insulators - Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators. Underground cables - Types of cables, Capacitance of Single-core cable, Grading of cables, Power factor and heating of cables, Capacitance of 3- core belted cable. | 09   | CO2 |
| UNIT-IV  | MECHANICAL DESIGN OF LINES AND GROUNDING                                                                                                                                                                                                                                                   | Hrs. | CO  |
| ~        |                                                                                                                                                                                                                                                                                            |      |     |

Sanjivani College of Engineering, Kopargaon

CO5

CO6

2

2

3

2

3

3

3

2

3

3

-

\_

-

-

-

\_

2023-2024

1

-

1

1

-

\_

1

1

3

3

-

-

|                       | Mechanical design of transmission line – Sag and tension calculations for different weather conditions, Tower spotting, Types of towers, Substation Layout (AIS, GIS), Methods of grounding.                                                                                                                                                                                                    | 09           | CO3  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--|--|--|
| UNIT-V                | TRANSMISSION LINE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                    | Hrs.         | CO   |  |  |  |
|                       | Introduction to transmission line parameters - Resistance of a Transmission Line -<br>Inductance of a transmission Line - Inductance of a 3-Phase Overhead Line -<br>Symmetrical and unsymmetrical spacing and transposition - Capacitance of single<br>and double transmission lines - Application of self and mutual GMD - Skin and<br>proximity effects - corona - Factors Affecting Corona. | 09           | CO5  |  |  |  |
| UNIT-VI               | MODELLING OF TRANSMISSION LINES                                                                                                                                                                                                                                                                                                                                                                 | Hrs.         | СО   |  |  |  |
|                       | Classification of lines - Short line, medium line and long line - equivalent circuits, phasor diagram, transmission efficiency and voltage regulation, real and reactive power flow in transmission lines, methods of voltage control.                                                                                                                                                          | 09           | CO6  |  |  |  |
| Text Books            |                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |  |  |  |
| Internat<br>[T2]. All | [T1]. Rakesh Das Begamudre, "Extra High Voltage AC Transmission Engineering", Fourth Edition, New Age<br>International publishers, 2014, ISBN 978-81-224-2481-2                                                                                                                                                                                                                                 |              |      |  |  |  |
| [T3]. B.F             | R.Gupta, "Power System Analysis and Design", Fourth Edition, Chand, 2005, 8121922                                                                                                                                                                                                                                                                                                               | 2380         |      |  |  |  |
| References            |                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |  |  |  |
| [R1]. Tur<br>Edition  | ran Gonen, "Electric Power Transmission System Engineering Analysis and Design", (<br>, 2014                                                                                                                                                                                                                                                                                                    | CRC Press, T | hird |  |  |  |

[R2]. Md. Abdus Salam, Quazi M. Rahman "Power Systems Grounding" Springer publishers, 2018, ISBN 981109165X

[R3]. A Chakraborti, D.P. Kothari and A.K. Mukhopadyay: Performance, Operation and Control of EHV Power Transmission Systems, T.M.H. (Pub) 1999, ISBN 9788185814704

#### EE405C: INTELLIGENT SYSTEMS WITH AI AND ML

| Teaching Scheme |              | <b>Examination Scheme</b> |           |
|-----------------|--------------|---------------------------|-----------|
| Lectures:       | 03 Hrs./Week | Continuous Assessment:    | 20 Marks  |
| Tutorial:       | Hr/Week      | In-Sem Exam:              | 30 Marks  |
|                 |              | End-Sem Exam:             | 50 Marks  |
| Credits:        | 03           | Total:                    | 100 Marks |

#### Prerequisite Course:

1. Programming languages, Probability.

#### **Course Objectives**

- 1. To locate soft commanding methodologies, such as artificial neural networks, Fuzzy logic and genetic Algorithms.
- 2. To observe the concepts of feed forward neural networks and about feedback neural networks.
- 3. To practice the concept of fuzziness involved in various systems and comprehensive knowledge of fuzzy logic control and to design the fuzzy control.
- 4. To analyze genetic algorithm, genetic operations and genetic mutations.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                  | Bloom's Taxonomy |            |  |
|-----|---------------------------------------------------------------------------------------------------------------------|------------------|------------|--|
|     |                                                                                                                     | Level            | Descriptor |  |
| CO1 | Express a good understanding of fundamental principles of machine learning.                                         | 2                | Understand |  |
| CO2 | Prepare a model using supervised/unsupervised machine learning algorithms for classification/prediction/clustering. | 3                | Apply      |  |
| СО3 | Discuss foundation principles, mathematical tools and program paradigms of AI.                                      | 2                | Understand |  |
| CO4 | Analyze fuzziness involved in various systems and fuzzy set theory.                                                 | 4                | Analyze    |  |
| CO5 | Apply fuzzy logic control for solution of various optimization problems                                             | 3                | Apply      |  |
| CO6 | Demonstrate application of AI techniques in solving electrical engineering problems.                                | 3                | Apply      |  |

| Mapping of Co | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|---------------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|               | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1           | 3                                                                                        | 2   | 3   | 1   | 3   | -   | -   | -   | 2   | 1    | -    | -    | 1    | -    |
| CO2           | 3                                                                                        | 2   | 2   | 1   | 2   | -   | -   | -   | -   | 1    | -    | -    | 1    | -    |
| CO3           | 3                                                                                        | 2   | 3   | 3   | 2   | -   | -   | -   | -   | 1    | -    | -    | 1    | -    |
| CO4           | 3                                                                                        | 3   | 3   | 3   | 2   | -   | -   | -   | 1   | 1    | -    | 1    | 2    | -    |
| CO5           | 3                                                                                        | 3   | 3   | 3   | 2   | -   | -   | -   | 1   | 1    | -    | 1    | 1    | -    |
| CO6           | 3                                                                                        | 3   | 3   | 3   | 2   | -   | -   | -   | -   | 1    | -    | 1    | 1    | -    |

**Course Contents** 

| UNIT-I                                                                                                                                                                                          | Foundations of AI & ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.                                   | СО                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|
|                                                                                                                                                                                                 | Python for AI & ML - Basics, Jupyter Notebook, functions, packages, libraries, data<br>structures, arrays, vectors, and data frames.<br>Applied Statistics - Descriptive statistics, inferential statistics, probability, and<br>hypothesis testing.                                                                                                                                                                                                                                                                                                                                                  | 07                                     | CO1                      |
| UNIT-II                                                                                                                                                                                         | Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.                                   | CO                       |
|                                                                                                                                                                                                 | Supervised Learning - Regression, classification, and support vector machines<br>Unsupervised Learning - Clustering and Dimensionality Reduction<br>Ensemble Techniques - Decision trees, random forests, bagging, and boosting<br>Featurization, Model Selection & Tuning - Feature engineering, model selection and<br>tuning, model performance measures, and ways of regularization.                                                                                                                                                                                                              | 08                                     | CO2                      |
| UNIT-III                                                                                                                                                                                        | Artificial Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.                                   | CO                       |
|                                                                                                                                                                                                 | Introduction to Neural Networks and Deep Learning - Gradient Descent, Perceptron,<br>Batch Normalization, Activation and Loss Functions, hyperparameter tuning, Tensor<br>Flow, and Keras.<br>Computer Vision - Convolutional Neural Networks (CNN), transfer learning, object<br>detection, and segmentation                                                                                                                                                                                                                                                                                         | 08                                     | CO3                      |
| UNIT-IV                                                                                                                                                                                         | Fuzzy Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.                                   | CO                       |
|                                                                                                                                                                                                 | Introduction – Fuzzy versus crisp – Fuzzy sets – Membership function – Basic Fuzzy set operations – Properties of Fuzzy sets – Fuzzy cartesian Product – Operations on Fuzzy relations – Fuzzy logic – Fuzzy Quantifiers – Fuzzy Inference – Fuzzy Rule based system – Defuzzification methods.                                                                                                                                                                                                                                                                                                       | 07                                     | CO4                      |
| UNIT-V                                                                                                                                                                                          | Genetic Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs.                                   | СО                       |
|                                                                                                                                                                                                 | Introduction-Encoding – Fitness Function-Reproduction operators – Genetic Modeling<br>– Genetic operators – Crossover – Single–site crossover – Two-point crossover –<br>Multi point crossover-Uniform crossover – Matrix crossover – Crossover Rate –<br>Inversion & Deletion – Mutation operator –Mutation – Mutation Rate-Bit-wise<br>operators – Generational cycle-convergence of Genetic Algorithm.                                                                                                                                                                                             | 08                                     | CO5                      |
| UNIT-VI                                                                                                                                                                                         | Applications of AI Techniques:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs.                                   | СО                       |
|                                                                                                                                                                                                 | Load forecasting – Load flow studies – Economic load dispatch – Load frequency control – Single area system and two area system – Small Signal Stability (Dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ 7                                    | 60(                      |
|                                                                                                                                                                                                 | stability) Reactive power control – speed control of DC and AC Motors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07                                     | CO6                      |
| Text Books:                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07                                     | 06                       |
| [T1] Stuart<br>978-0-<br>[T2] Marc Pe<br>Univer                                                                                                                                                 | stability) Reactive power control – speed control of DC and AC Motors.<br>J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall 20<br>13-604259-4<br>ter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learnin,<br>sity Press 2020. ISBN-13:978-1108455145<br>ekaran and G.A.V. Pai Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI, New                                                                                                                                                                                              | )10. ISB<br>g, Camł                    | N-13:<br>pridge          |
| <ul> <li>[T1] Stuart</li> <li>978-0-</li> <li>[T2] Marc Pe</li> <li>Univer</li> <li>[T3] S. Rajase</li> </ul>                                                                                   | stability) Reactive power control – speed control of DC and AC Motors.<br>J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall 20<br>13-604259-4<br>ter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learnin,<br>sity Press 2020. ISBN-13:978-1108455145<br>ekaran and G.A.V. Pai Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI, New                                                                                                                                                                                              | )10. ISB<br>g, Camł                    | N-13:<br>pridge          |
| <ul> <li>[T1] Stuart<br/>978-0-</li> <li>[T2] Marc Pee<br/>Univer</li> <li>[T3] S. Rajase</li> <li>ISBN-9788124</li> <li>References:</li> <li>[R1] Rober J.</li> <li>[R2] Artificial</li> </ul> | stability) Reactive power control – speed control of DC and AC Motors.<br>J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall 20<br>13-604259-4<br>ter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learnin,<br>sity Press 2020. ISBN-13:978-1108455145<br>ekaran and G.A.V. Pai Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI, New                                                                                                                                                                                              | )10. ISB<br>g, Camb<br>v Delhi,<br>181 | N-13:<br>pridge<br>2003. |
| <ul> <li>[T1] Stuart<br/>978-0-</li> <li>[T2] Marc Pe<br/>Univer</li> <li>[T3] S. Rajase</li> <li>ISBN-9788120</li> <li>References:</li> <li>[R1] Rober J.</li> <li>[R2] Artificial</li> </ul>  | stability) Reactive power control – speed control of DC and AC Motors.<br>J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall 20<br>13-604259-4<br>ter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learnin<br>sity Press 2020. ISBN-13:978-1108455145<br>ekaran and G.A.V. Pai Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI, New<br>0321861<br>Schalkoff, Artificial Neural Networks, Tata McGraw Hill Edition, 2011. ISBN-9780070571<br>Intelligence and Intelligent Systems, OXFORD University Press, New Delhi, 2005- N. P. | )10. ISB<br>g, Camb<br>v Delhi,<br>181 | N-13:<br>pridge<br>2003. |

[E1] NPTEL course: course Name: An Introduction to Artificial Intelligence, Course Link: https://nptel.ac.in/courses/106102220

2023-2024

**CO2** 

CO3

4

4

Analyze

Analyze

#### **EE406: SWITCHGEAR AND PROTECTION LABORATORY**

| Teaching So    | heme                                                                                                                                                                                     | Examinatio             | ion Scheme |            |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------|--|--|--|--|--|
| Practical:     | 02 Hrs./Week                                                                                                                                                                             | Oral:                  |            | 50 Marks   |  |  |  |  |  |
| Credits:       | 01                                                                                                                                                                                       | Total:                 |            | 50 Marks   |  |  |  |  |  |
| -              | Prerequisite Course:<br>1. Power system                                                                                                                                                  |                        |            |            |  |  |  |  |  |
| Course Obj     | ectives                                                                                                                                                                                  |                        |            |            |  |  |  |  |  |
| 2. To<br>3. To | ntroduce the characteristics and functions of rela<br>mpart knowledge on apparatus protection<br>ntroduce static and numerical relays<br>mpart knowledge on functioning of circuit break |                        |            |            |  |  |  |  |  |
| Course Out     | comes (COs):                                                                                                                                                                             |                        |            |            |  |  |  |  |  |
| After succes   | sful completion of the course, student will be abl                                                                                                                                       | e to                   |            |            |  |  |  |  |  |
|                | Course Outcome (s)                                                                                                                                                                       |                        | Bloom's    | Taxonomy   |  |  |  |  |  |
|                |                                                                                                                                                                                          |                        | Level      | Descriptor |  |  |  |  |  |
| CO1            | Test the operation of various protective devices                                                                                                                                         | s used in power system | 3          | Apply      |  |  |  |  |  |
|                |                                                                                                                                                                                          |                        |            |            |  |  |  |  |  |

| Mappin                                                                                                                                                               | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |   |   |   |  |   |   |   |   |   |   |   |   |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|---|---|--|---|---|---|---|---|---|---|---|---|
| PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02 |                                                                                          |   |   |   |  |   |   |   |   |   |   |   |   |   |
| CO1                                                                                                                                                                  | 2                                                                                        | 1 | 1 | - |  | - | - | - | 3 | 3 | 1 | 2 | 2 | 2 |
| CO2                                                                                                                                                                  | CO2     2     2     1     2     2     -     -     3     3     1     2     2     2        |   |   |   |  |   |   |   |   |   |   |   |   |   |
| CO3                                                                                                                                                                  | CO3     2     2     1     2     2     -     -     3     3     1     2     2     2        |   |   |   |  |   |   |   |   |   |   |   |   |   |

Evaluate the operating characteristics of relays and circuit breaker

Test the various protection schemes employed for generator protection

| Course Contents |                                                                                                           |            |      |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------|------------|------|--|--|--|
| Ex. No          | Name of Experiment                                                                                        | Hrs.       | COs  |  |  |  |
| 1               | Testing of Fuse, MCB and MCCB                                                                             | 2          | 1    |  |  |  |
| 2               | Performance characteristics of IDMT type Induction over current relay                                     | 2          | 2    |  |  |  |
| 3               | Performance characteristics of gas actuated buchholz relay for oil filled transformer using Virtual Lab   | 2          | 2    |  |  |  |
| 4               | Performance Characteristics of digital over current relay                                                 | 2          | 2    |  |  |  |
| 5               | Performance Characteristics of Air Circuit Breaker                                                        | 2          | 2    |  |  |  |
| 6               | Performance characteristics of over current relay in Generator Protection<br>Simulator                    | 2          | 3    |  |  |  |
| 7               | Performance characteristics of Differential Current Relay in Generator<br>Protection Simulator            | 2          | 3    |  |  |  |
| 8               | Performance characteristics of Over Voltage Relay in Generator Protection<br>Simulator                    | 2          | 3    |  |  |  |
| 9               | Performance characteristics of Under Voltage Relay Protection Scheme in<br>Generator Protection Simulator | 2          | 3    |  |  |  |
| 10              | Performance characteristics of Over/Under Frequency Relay in Generator<br>Protection Simulator            | 2          | 3    |  |  |  |
| 11              | Performance characteristics of Reverse Power Relay in Generator<br>Protection Simulator                   | 2          | 3    |  |  |  |
| Text Books      | :                                                                                                         |            |      |  |  |  |
| T11. Sunil      | S.Rao, "Switchgear and Protection", Khanna Publishers, New Delhi, 14 <sup>th</sup> Edition                | 2021 ISBN: | 978- |  |  |  |

[T1]. Sunil S.Rao, "Switchgear and Protection", Khanna Publishers, New Delhi, 14<sup>th</sup> Edition, 2021, ISBN: 978-9387394728 [T2]. M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, "A Text Book on Power System Engineering", Dhanpat Rai & Co.,Jan 2016, ISBN : 9788177000207

[T3]. Stanley H. Horowitz, Arun G. Phadke , Power System Relaying, John Wiley, 2014, ISBN: 978-0-470-75878-6 References:

[R1] Badri Ram, D. N. Vishwakarma, "Power System Protection and Switchgear" Tata McGraw Hill Publishing Co. Ltd., 3<sup>rd</sup> edition, 2022, ISBN: 978-9355322852

[R2] H Lee Blackburn, "Protective Relaying- Principles and Applications", Dekker Publications, 3<sup>rd</sup> edition, 2007, ISBN: 978-0-9568678-0-3

[R3] Mason C.R., "Art and Science of Protective Relaying", Wiley Eastern Limited, 1996, ISBN: 978-0471575528 **E-References** 

[E1] Power System Protection and Switchgear (IIT Roorkee) <u>https://archive.nptel.ac.in/courses/108/107/108107167/</u>

## **EE407: CONTROL SYSTEM DESIGN LABORATORY**

| Teaching Scheme |              | Examination Scheme |          |
|-----------------|--------------|--------------------|----------|
| Practical:      | 02 Hrs./Week | Oral:              | 50 Marks |
| Credits:        | 01           | Total:             | 50 Marks |

- Prerequisite Course:1.Control System Engineering2.MATLAB Programming

| Course Objectives                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <ol> <li>Make students identify various characteristics of nonlinear systems.</li> <li>Develop skills for analysing nonlinear systems.</li> <li>Make students study features and configurations of digital control systems.</li> <li>Understand the practical controllers and compensators</li> </ol> |  |  |  |  |  |  |  |
| Course Outcomes (COs):                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| After successful completion of the course, student will be able to                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

|     | Course Outcome (s)                                                         | Bloom's | Taxonomy              |
|-----|----------------------------------------------------------------------------|---------|-----------------------|
|     |                                                                            | Level   | Descriptor            |
| CO1 | Apply sampling theorem and analyse peculiar non-linearities.               | 3<br>4  | Applying<br>Analysing |
| CO2 | Apply concepts of state space approach for system design.                  | 3       | Applying              |
| СО3 | Apply PID controller and various compensators using hardware and software. | 3       | Applying              |

| Mappin                                                                                                            | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):                                                                             |  |  |  |  |  |  |  |   |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|---|--|--|
|                                                                                                                   | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02 |  |  |  |  |  |  |  |   |  |  |
| CO1         3         3         3         3         -         -         -         -         2         2         2 |                                                                                                                                                                      |  |  |  |  |  |  |  | 2 |  |  |
| CO2                                                                                                               | CO2       3       3       3       3       -       -       -       -       2       2       2                                                                          |  |  |  |  |  |  |  |   |  |  |
| CO3                                                                                                               | CO3     3     3     3     3     -     -     -     -     2     2     2                                                                                                |  |  |  |  |  |  |  |   |  |  |

|              | Course Contents                                                                                                  |      |     |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|--|--|
| Any 8 of the | Any 8 of the following experiments are to be conducted.                                                          |      |     |  |  |  |  |  |
| Ex. No       | Name of Experiment                                                                                               | Hrs. | COs |  |  |  |  |  |
| 1            | Demonstration of characteristics of peculiar nonlinearities using software.                                      | 02   | CO1 |  |  |  |  |  |
| 2            | Demonstration of effect of sampling and verification of sampling theorem.                                        |      | CO1 |  |  |  |  |  |
| 3            | Software programming for determination of state space representation for given transfer function and vice-versa. | 02   | CO2 |  |  |  |  |  |
| 4            | Calculation of state transition matrix, state X (t), Eigen values using MATLAB.                                  | 02   | CO2 |  |  |  |  |  |
| 5            | Test observability and controllability of the system                                                             | 02   | CO2 |  |  |  |  |  |
| 6            | Demonstrate digital closed loop position control DC servomotor using optical encoder feedback.                   | 02   | CO3 |  |  |  |  |  |
| 7            | Transformation of a continuous time system into digital control system and check response using software.        | 02   | CO3 |  |  |  |  |  |
| 8            | Evaluate closed loop performance of the control setup for different P, PI, PID controller settings.              | 02   | CO3 |  |  |  |  |  |

Sanjivani College of Engineering, Kopargaon

| 9                                             | Demonstrate PID simulator on Second order system.                                                                                                                                                                                                                                                                                                                                                                                      | 02        | CO3 |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|--|--|--|--|--|
| 10                                            | Demonstrate performance characteristics of different compensators for given system using experimental kit and software.                                                                                                                                                                                                                                                                                                                | 02        | CO3 |  |  |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |     |  |  |  |  |  |
| Text Bo                                       | ks:                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |     |  |  |  |  |  |
| [T2]. 1<br>[T3]. 1<br>[T4]. 1<br>202<br>[T5]. | <ul> <li>[T2]. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, 13<sup>th</sup> Edition, Pearson Ed, ISBN 9780134407623.</li> <li>[T3]. Benjamin C. Kuo, Digital Control System, Second Edition, Oxford University Press, 2007, ISBN 0195686209</li> <li>[T4]. I. J. Nagarath, M. Gopal, Control System Engineering, 7<sup>th</sup> Edition, New Age International (P) Limited, Publishers, 2021, ISBN 8195175589</li> </ul> |           |     |  |  |  |  |  |
| Referen                                       | ees:                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |     |  |  |  |  |  |
|                                               | 1. Gopal, "Control Systems: Principles and Design", McGraw Hill Education ISBN 9780<br>. C. Kuo, "Automatic Control System", Prentice Hall, 2014, ISBN 9788126552337                                                                                                                                                                                                                                                                   | 071333269 |     |  |  |  |  |  |
| E-Reso                                        | rces:                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |     |  |  |  |  |  |
| [E2]                                          | [E1] Control Engineering, IIT Delhi by Prof. M. Gopal<br>(https://nptel.ac.in/courses/108102043)                                                                                                                                                                                                                                                                                                                                       |           |     |  |  |  |  |  |

#### **EE416: HIGH VOLTAGE ENGINEERING LAB**

| Teaching S | cheme |              | Examination Scheme |          |
|------------|-------|--------------|--------------------|----------|
| Practical: |       | 02 Hrs./Week | Practical:         | 50 Marks |
| Credits:   |       | 01           | Total:             | 50 Marks |

**Prerequisite Course:** Atomic and molecular structure of gaseous and solid materials, basic properties of conductors and insulators, knowledge of Electrical Engineering Materials.

#### **Course Objectives**

- 1. To enable students to know and compare the various processes of breakdown in solid, liquid and gaseous dielectric materials  $\cdot$
- 2. To enable students understand and apply various methods of generation and measurement of DC, AC, impulse voltage and current.
- 3. To enable students to know the charge formation and separation phenomenon in clouds, causes of overvoltage and lightening phenomenon ·
- 4. To develop ability among learners to execute testing on various high voltage equipments as per standards ·
- 5. To introduce students to the design, layout, safety precautions, earthing, and shielding of HV laboratory.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                             |       |            |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------|-------|------------|--|--|--|--|--|
|     |                                                                                | Level | Descriptor |  |  |  |  |  |
| CO1 | Test the operation of various protective devices used in insulating materials. | 3     | Applying   |  |  |  |  |  |
| CO2 | Evaluate the operating characteristics of relays and circuit breaker           | 3     | Applying   |  |  |  |  |  |
| CO3 | Test the various protection schemes employed for generator protection          | 3     | Applying   |  |  |  |  |  |

|     | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                                                        | 1   | 1   | -   |     | -   | -   | -   | 3   | 3    | 1    | 2    | 1    | 2    |
| CO2 | 2                                                                                        | 2   | 1   | 2   | 2   | -   | -   | -   | 3   | 3    | 1    | 2    | 1    | 2    |
| CO3 | 2                                                                                        | 2   | 1   | 2   | 2   | -   | -   | -   | 3   | 3    | 1    | 2    | 1    | 2    |

| Course Contents |                                                                                                                                                                 |      |     |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|--|--|--|
| Ex. No          | Name of Experiment                                                                                                                                              | Hrs. | COs |  |  |  |  |  |  |
| 1               | To find the constants of breakdown equation of transformer oil.(Analytical and graphical method)                                                                | 02   | 01  |  |  |  |  |  |  |
| 2               | Measurement of unknown high a.c. voltage using sphere gap                                                                                                       | 02   | 01  |  |  |  |  |  |  |
| 3               | To obtain breakdown strength of composite insulation system, and observe the effect of parameter like no. of layers, thickness of layer, effect of interfacing. | 02   | 02  |  |  |  |  |  |  |
| 4               | To find out the breakdown of air in uniform and non uniform field and compare it.                                                                               | 02   | 02  |  |  |  |  |  |  |
| 5               | To study surface flashover on corrugated porcelain/polymeric insulation system.                                                                                 | 02   | 03  |  |  |  |  |  |  |
| 6               | To understand basic principle of corona and obtain audible and visible corona inception and extinction voltage under non uniform field.                         | 02   | 03  |  |  |  |  |  |  |
| 7               | To perform experiment on horn gap arrestor and understand arc quenching phenomenon.                                                                             | 02   | 04  |  |  |  |  |  |  |
| 8               | To observe development of tracks and trees on polymeric insulation system.                                                                                      | 02   | 04  |  |  |  |  |  |  |
| 9               | Parametric analysis of Impulse current generator using virtual Laboratory.                                                                                      | 02   | 04  |  |  |  |  |  |  |

Sanjivani College of Engineering, Kopargaon

#### **B.** Tech Electrical Engineering

2022 Pattern

| 10  | 10. To perform experiment on rod gap arrestor.                                                  | 02 | 05 |
|-----|-------------------------------------------------------------------------------------------------|----|----|
| 11  | To Study effect of barrier on breakdown voltage of air/ transformer oil.                        | 02 | 05 |
| 12. | Simulation of lightening and switching impulse voltage generator using any simulation software. | 02 | 05 |
| 13. | To perform various HV insulation tests on cables as per IS.                                     | 02 | 06 |
| 14. | Study of layout /earthing/safety of HV installation /lab in any industry by visit /virtual lab  | 02 | 06 |
| 15. | Study of any IS for any power apparatus (Power Transformer/Induction Motor/<br>Alternator etc)  | 02 | 06 |

#### Text Books:

[T1] M. S. Naidu, V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill Publication Co. Ltd. New Delhi, ISBN 0-07-462286-2

[T2] C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers Ltd,

ISBN 10: 8122418597 ISBN 13: 9788122418590

#### **References:**

[R1] E. Kuffel, W. S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication, ISBN 0 7506 3634 3

- [R2] Prof. D. V. Razevig Translated from Russian by Dr. M. P. Chourasia, "High Voltage Engineering", Khanna Publishers, New Delhi, ISBN: 978 - 0 - 620 – 3767-7.
- [R3] Ravindra Arora, Wolf Gang Mosch, "High Voltage Insulation Engineering", New Age International ISBN 13- 978-8122406191
- [R4] High Voltage Engineering Theory and Practice by M. Khalifa Marcel Dekker Inc. New York, ISBN 10 0824781287

[R5] Subir Ray, "An Introduction to High voltage Engineering" PHI Pvt. Ltd. New Delhi, ISBN, 8120347404

[R6] IS 731-1971:Porcelain insulator for overhead power lines with nominal voltage > 1000 Volt, ISBN-13: 978-0824748098

[R7] Bushings :IS2099-1986, specification for bushings for A.C. Voltages > 1000 Volts, ISBN-13: 978-0824748098

[R8] Pollution test :IEC 60507-1991 on external and internal insulator, ISBN-10: 0824748093

[R9] High voltage test techniques, general definitions and test requirements: IS 2071(part 1) 1993, IEC Pub 60-1(1989), ISBN 60060-1:2010.

#### **EE409: PROJECT STAGE I Teaching Scheme Examination Scheme** 06 Hrs./Week 50 Marks **Practical: Oral:** Term Work: 100 Marks 03 150 Marks Credits: Total: Prerequisite Course: Mini Project, Seminar **Course Objectives** 1. To offer an opportunity to demonstrate their competence in laboratory work. 2. To integrate the knowledge gained in courses studied. 3. To allow the exercise maturity, initiative and creative ability. 4. To apply communication skills, both oral and written, to communicate results, concepts and ideas. 5. To solve problems of a non-routine nature. **Course Outcomes (COs):** After successful completion of the course, student will be able to **Course Outcome (s) Bloom's Taxonomy** Level Descriptor Ability to plan and implement an investigative or developmental project **CO1** 2 Understanding given general objectives and guidelines. 3 **CO2** In-depth skill to use some laboratory, modern tools and techniques. Applying Ability to analyze data to produce useful information and to draw **CO3** 4 Analyzing conclusions by systematic deduction. Facilitate significant individualized interactions between faculty **CO4** 5 Evaluate members and students through a multi-term research experience. Ability to communicate results, concepts, analyses and ideas in written 5 **CO5** Evaluate and oral form. Conduct an extended independent investigation that results in the **CO6** 6 Create production of a research thesis.

| Mappir | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 |
| CO1    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| CO2    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2    | 1    | 1    | 1    | 1    | 2    | 1    |
| CO3    | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 2    | 1    | 1    | 1    | 1    | 2    | 1    |
| CO4    | 2                                                                                        | 2   | 1   | 2   | 2   | 1   | 1   | 1   | 1   | 2    | 1    | 1    | 1    | 1    | 2    | 1    |
| CO5    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| CO6    | 2                                                                                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

#### **Course Contents**

#### A. Guidelines for Students:

- 1. To identify the problems in industry and society.
- 2. Perform Literature survey on the specific chosen topic through research papers, Journals, books etc. and market survey if required.
- 3. To narrow down the area taking into consideration his/her strength and interest. The nature of project can be analytical, simulation, experimentation, design and validation.
- 4. Define problem, objectives, scope and its outcomes.
- 5. Design scheme of implementation of project.
- 6. Data collection, simulation, design, hardware if any, needs to be completed.
- 7. Presentation based on partially completed work.
- 8. Submission of report based on the work carried out.
- 9. Student should maintain Project Work Book.
- B. Domains for Seminar / Mini Project may be from the following, but not limited to:
- Power Systems
- · Power/Smart Grid
- · Electric automobile
- · Computer/Communication Networking

#### $\cdot$ IOT

- · AI in Electrical Engineering
- · Microcontroller based/Embedded systems
- · Power electronics and drives
- · High Voltage Engineering
- · Agriculture Engineering
- · Battery Technology's
- · Robotics/Mechatronics/Process Automation
- · Energy efficiency technique
- · Green / Clean energy

The student shall take up a project in the field closely related to Electrical Engineering. Preferably, group of 3/4 students should be formed for project work.

The project work should be based on the knowledge acquired by the student during the graduation and preferably it should meet and contribute towards the needs of the society. The project aims to provide an opportunity of designing and building complete system or subsystems based on area where the student likes to acquire specialized skills.

Project work in this semester is an integral part of the complete project. In this, the student shall complete the partial work of the project which will consists of problem statement, literature review, project overview and scheme of implementation. As a part of the progress report of project work, the candidate shall deliver a presentation on the advancement in Technology pertaining to the selected project topic.

| MC410A: FINANCIAL SMART                    |                                                        |                       |                  |            |  |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------------------|-----------------------|------------------|------------|--|--|--|--|--|--|
|                                            |                                                        |                       |                  |            |  |  |  |  |  |  |
| Teaching Scheme         Examination Scheme |                                                        |                       |                  |            |  |  |  |  |  |  |
| Lectures:                                  | 01 Hrs./Week                                           | End-Sem Exam:         | NA               |            |  |  |  |  |  |  |
| Credits:                                   | Non-Credit 7                                           | lotal:                | PASS / FAIL      |            |  |  |  |  |  |  |
| Prerequisi                                 | te Course:                                             |                       |                  |            |  |  |  |  |  |  |
| Course Obj                                 | ectives:                                               |                       |                  |            |  |  |  |  |  |  |
| 1.                                         | Personal Financial Literacy Program for Young Adults   | - Being Financially S | mart             |            |  |  |  |  |  |  |
| <b>Course Out</b>                          | comes (COs):                                           |                       |                  |            |  |  |  |  |  |  |
| After succes                               | sful completion of the course, student will be able to |                       |                  |            |  |  |  |  |  |  |
|                                            | Course Outcome (s)                                     |                       | Bloom's Taxonomy |            |  |  |  |  |  |  |
|                                            |                                                        |                       | Level            | Descriptor |  |  |  |  |  |  |
| CO1                                        | Adapt psychology of money and financial managemen      | 3                     | Adapt            |            |  |  |  |  |  |  |
| CO2                                        | Set financial goals and plan accordingly               | 2                     | Set              |            |  |  |  |  |  |  |
| CO3                                        | Manage the risk involved in personal and business fina | ance and investment   | 2                | Understand |  |  |  |  |  |  |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | -                                                                                        | -   | -   | -   | -   | 3   | -   | 3   | 2   | -    | 3    | 2    | -    | -    |
| CO2    | -                                                                                        | -   | -   | -   | -   | 3   | -   | 3   | 2   | -    | 3    | 2    | -    | -    |
| CO3    | -                                                                                        | -   | -   | -   | -   | 3   | -   | 3   | 2   | -    | 3    | 2    | -    | -    |

|          | Course Contents                                            |      |      |
|----------|------------------------------------------------------------|------|------|
| UNIT I   | Behavioural Finance                                        | Hrs. | COs  |
|          | Section 1 – Let's Talk Money                               |      |      |
|          | 1. Psychology of Money                                     |      |      |
|          | 2. Your Relationship with Money                            |      |      |
|          | 3. Human Behaviour in Financial Markets                    | 3    | CO1  |
|          | Section 2 – Why Financial Literacy?                        |      |      |
|          | 1. Importance of Financial Literacy                        |      |      |
|          | 2. Costly Money Mistakes                                   |      | 66   |
| UNIT II  | Money Management Skills                                    | Hrs. | COs  |
|          | Section 1 – Important Concepts                             |      |      |
|          | 1. Saving vs Investing                                     |      |      |
|          | 2. Inflation                                               | 2    | CO1  |
|          | 3. Power of Compounding                                    | 3    | CO1  |
|          | Section 2 – Money Management Techniques                    |      |      |
|          | 1. S.M.A.R.T.E.R way to Wealth<br>2. Money Jar Method      |      |      |
|          | Micro-Project 1 - Exercise                                 |      |      |
| UNIT III | Steps of Financial Planning                                | Hrs. | Cos  |
|          | Section 1 – Let's Start Planning                           |      | 0.00 |
|          | 1. Need & Components of Financial Planning                 |      |      |
|          | 2. Personal Income Statement– Cashflow Mgt & NetWorth Mgt. |      |      |
|          | 3. S.M.A.R.T Goal Setting                                  | 2    | 602  |
|          | Section 2 - Goal Based Investment Planning                 | 3    | CO2  |
|          | 1. Contingency/Emergency Fund Planning                     |      |      |
|          | 2. Lifestyle/ Retirement Planning                          |      |      |
|          | 3. Estate Planning                                         |      |      |
| UNIT IV  | Risk & Investment Management                               | Hrs. | Cos  |
|          | Section 1 - Risk Management                                |      |      |
|          | 1.Understanding Risk Management                            |      |      |
|          | 2. Life Insurance                                          |      |      |
|          | 3. Health Insurance                                        | 3    | CO3  |
|          | Section 2 - Investment Management                          |      |      |
|          | 1. Asset Allocation<br>2. Mutual Funds - Overview          |      |      |
|          |                                                            | 1    | 1    |

Sanjivani College of Engineering, Kopargaon
|                    | 3. Review & Action                                                                       |          |      |
|--------------------|------------------------------------------------------------------------------------------|----------|------|
|                    | Micro-Project 2 - Case Study                                                             |          |      |
| UNIT V             | Introduction to Business Finance                                                         | Hrs.     | Cos  |
|                    | 1. How to Read an Income Statement                                                       | 3        | CO3  |
|                    | 2. How to Read a Balance Sheet                                                           | 5        | COS  |
| Post -session      | : - 1. Evaluation 2. Feedback 3. Certification                                           |          |      |
| <b>Text Books:</b> |                                                                                          |          |      |
| [T1] Industri      | al Engineering and Management, O.P. Khanna, Dhanpat Rai and Sons, New Delhi, ISBN 10     | 138      |      |
| [T2] Basic M       | Ianagerial Skill for All, E. H. McGrah, 52101                                            |          |      |
| [T3] Manage        | ment of Technology, Tarek Khalil, Tata Mc Graw Hill Publication Pvt. Ltd., 54543         |          |      |
|                    | lha Ganguli Intellectual Property Rights, Prabuddha Ganguli , TATA McGraw-Hill Publishin | ig Comp  | any, |
| [T5] Manage        | ment Accounting and Financial management,"M. Y. Khan and P. K. jain, Mcgraw Hill         |          |      |
| References:        |                                                                                          |          |      |
| [R1] Personn       | el Management, C. B. Mamoria and V.S.P.Rao,,Himalaya Publishing House, 60852             |          |      |
| [R2] Marketi       | ng Management, Philip Kotler, Pearson Edition 2008, 15265                                |          |      |
| [R3] Financia      | al Management by "I M Pandey", I M Pandey, Vikas Publishing House Pvt. Ltd., Delhi Phili | p Kotler | -    |
| Marketing M        | anagement 45416                                                                          |          |      |
| [R4] Total Q       | uality Management, Kelly John M, InfoTech Standard, Delhi.                               |          |      |

[R5] The Law of Intellectual Property Rights, Shiv Sahai Singh



# SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)





DEPARTMENT OF ELECTRICAL ENGINEERING COURSE STRUCTURE - 2020 PATTERN FINAL YEAR B. TECH Academic Year 2023-24

# SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON (An Autonomous Institute Affiliated to Savitribai Phule Pune University, Pune)

DEPARTMENT OF ELECTRICAL ENGINEERING



**Profile:** The Electrical Engineering degree program offer the graduates to enter a dynamic and rapidly changing field with career opportunities in Electric Power System, Power Electronics, Robotics and Control, Microprocessors and Controllers, Integrated Circuits, Computer Software. The demand for electrical power and electronic systems is increasing rapidly and electrical engineers are in great demand to meet the requirements of the growing industry. Electrical Engineers are mainly employed in industries using Electrical Power, Manufacturing Electrical Equipment, Accessories, Electronic Systems, Research and Development departments which work on energy saving devices and Software Development.

Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, electromagnetic and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, Artificial Intelligence, mechatronics, and electrical materials science. Identifying these areas today's Electrical Engineer needs to have the capacity of adaptability and creativity in these new technical eras, to meet the industry 4.0.

Electrical Engineering Department of Sanjivani College of Engineering offers the B. Tech. course in Electrical Engineering with an intake of 60 students. The department has well qualified and dedicated faculty and is known for its high academic standards, well-maintained discipline, and complete infrastructure facilities.

## Vision of Department

To produce quality electrical engineers with the knowledge of latest trends, research technologies to meet the developing needs of industry & society



- M1: To impart quality education through teaching learning process
- M2: To establish well-equipped laboratories to develop R&D culture in contemporary and sustainable technologies in Electrical Engineering
- M3: To produce Electrical Engineering graduates with quest for excellence, enthusiasm for continuous learning, ethical behavior, integrity and nurture leadership



- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, society, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

- 6. **The engineer and society:** Apply reasoning in formed by the contextual knowledge to assess social, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply the set of one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

## **Program Educational Objectives (PEOs)**

The PEOs of undergraduate programme in Electrical Engineering are broadly classified as follows: **PEO 1:** Equip the student to analyze and solve real world problems to face the challenges of future. **PEO 2:** Pursue higher education, research in Electrical Engineering or other allied fields of their interest for professional development.

PEO 3: Exhibit the leadership skills and ethical value for society

## **Program Specific Objectives (PSOs)**

**PSO 1:** Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronics circuits, control systems, electrical machines and Power system.

**PSO 2:** Apply the appropriate modern engineering hardware, and software tools in electrical engineering to engage in life-long learning and to successfully adapt in multi-disciplinary environments.

### **COURSE STRUCTURE- 2020 PATTERN** FINAL YEAR B. TECH. ELECTRICAL ENGINEERING

#### **SEMESTER-VII**

|      |       | Course                                                                                                                                                             | Т  |   |    | Scheme<br>week | Evaluation Scheme-Marks |        |     |     |    |     |               |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|----------------|-------------------------|--------|-----|-----|----|-----|---------------|
| Cat. | Code  | Title                                                                                                                                                              | L  | т | Р  | Credits        |                         | Theory |     | OR  | PR | TW  | Total         |
| Cal. | Code  |                                                                                                                                                                    | L  | 1 | r  | Creatts        | ISE                     | ESE    | CA  | UK  | rĸ | 1 W | Total         |
| PCC  | EE401 | Switch Gear and Protection                                                                                                                                         | 3  | - | -  | 3              | 30                      | 50     | 20  | -   | -  | -   | 100           |
| PCC  | EE402 | Control System Design                                                                                                                                              | 3  | - | -  | 3              | 30                      | 50     | 20  | -   | -  | -   | 100           |
| PCC  | EE403 | High Voltage<br>Engineering                                                                                                                                        | 3  | - | -  | 3              | 30                      | 50     | 20  | -   | -  | -   | 100           |
| PEC  | EE404 | Professional Elective-<br>III<br>A. Electric and Hybrid<br>Vehicle<br>B. HVDC<br>Transmission Systems<br>C. Digital Signal<br>Processing<br>Professional Elective- | 4  | - | -  | 4              | 30                      | 50     | 20  | -   | -  | -   | 100           |
| PEC  | EE405 | IV<br>A. Power Quality<br>B. Transmission and<br>Distribution<br>C. Intelligent Systems<br>with AI and ML                                                          | 3  | - | -  | 3              | 30                      | 50     | 20  | -   | -  | -   | 100           |
| LC   | EE406 | Switch Gear and<br>Protection Laboratory                                                                                                                           | -  | - | 2  | 1              | -                       | -      | -   | 50  | -  | -   | 50            |
| LC   | EE407 | Control System Design<br>Laboratory                                                                                                                                | -  | - | 2  | 1              | -                       | -      | -   | 50  | -  | -   | 50            |
| LC   | EE408 | High Voltage<br>Engineering<br>Laboratory                                                                                                                          | -  | - | 2  | 1              | -                       | -      | -   | -   | 50 | -   | 50            |
| PROJ | EE409 | Project Stage I                                                                                                                                                    | -  | - | 6  | 3              | -                       | -      | -   | 50  | -  | 100 | 150           |
| MLC  | MC410 | Mandatory Learning<br>Course-VII<br>A. Financially Smart                                                                                                           | 1  | - | -  | Non<br>Credit  | -                       | -      | -   | -   | -  | -   | Pass/<br>Fail |
|      |       | Total                                                                                                                                                              | 17 | - | 12 | 22             | 150                     | 250    | 100 | 150 | 50 | 100 | 800           |

## **COURSE STRUCTURE- 2020 PATTERN** FINAL YEAR B. TECH. ELECTRICAL ENGINEERING

### **SEMESTER-VIII**

|      | Course |                                                                                                                                                                                                                                                                                                                            |   |   |    | heme<br>eek | <b>Evaluation Scheme-Marks</b> |     |     |    |     |       |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|-------------|--------------------------------|-----|-----|----|-----|-------|
| Cat. | Code   | Title                                                                                                                                                                                                                                                                                                                      | L | т | р  | Cred        | The                            | ory | OR  | PR | TW  | Total |
| Cal. | Coue   | The                                                                                                                                                                                                                                                                                                                        | L | 1 | 1  | its         | ISE                            | ESE | UK  | IK | 1 W | 10181 |
| OEC  | EE411  | <ul> <li>Open Elective I (NPTEL)</li> <li>A. Sensors and Actuators</li> <li>B. Circuit Analysis for Analog<br/>Designers</li> <li>C. Industrial Automation and<br/>Control</li> <li>D. Problem Solving through<br/>programming in C</li> </ul>                                                                             | 3 | - | -  | 3           | 25                             | 75  | -   | -  | -   | 100   |
| OEC  | EE412  | <ul> <li>Open Elective-II (NPTEL)</li> <li>A. Fundamentals of<br/>Semiconductor Devices</li> <li>B. Computer-Aided Design of<br/>Electrical Machines</li> <li>C. Introduction To Industry<br/>4.0 And Industrial Internet<br/>of Things</li> <li>D. Embedded Sensing,<br/>Actuation and Interfacing<br/>Systems</li> </ul> | 3 | _ | _  | 3           | 25                             | 75  | -   | -  | -   | 100   |
| OEC  | EE413  | <ul> <li>Open Elective III (NPTEL)</li> <li>A. EV - Vehicle Dynamics and<br/>Electric Motor Drives</li> <li>B. FACTs Devices</li> <li>C. Power Quality Improvement<br/>Technique</li> <li>D. Data Science for Engineers</li> </ul>                                                                                         | 2 | - | -  | 2           | 25                             | 75  | -   | -  | -   | 100   |
| PROJ | EE414  | Internship                                                                                                                                                                                                                                                                                                                 | - | - | 12 | 6           | -                              | -   | 50  | -  | 100 | 150   |
| PROJ | EE415  | Project Stage-II                                                                                                                                                                                                                                                                                                           | - | - | 4  | 2           | -                              | -   | 50  | -  | -   | 50    |
|      |        | Total                                                                                                                                                                                                                                                                                                                      | 9 | - | 16 | 16          | 150                            | 150 | 100 | -  | 100 | 500   |



**100 Marks** 

## **EE411A: Sensors and Actuators**

| Teaching Scheme | Examination Scheme         |
|-----------------|----------------------------|
| Lectures: NA    | NPTEL Assignment: 25 Marks |
|                 | NPTEL Exam: 75 Marks       |

**Total:** 

#### Credits: 3

Prerequisite Course:

1. Basic Electronics

#### **Course Objectives**

- 1. Understand basics of sensors, actuators and their operating principle.
- 2. Educate the students on different types of microfabrication techniques for designing and developing sensors
- 3. Explain working of various types of electrochemical sensors and actuators. Fourth objective is to provide information about interfacing of sensors and signal conditioning circuits to establish any control system or monitoring system.
- 4. Provide information about interfacing of sensors and signal conditioning circuits to establish any control system or monitoring system.
- 5. Provide knowledge about simulation and characterization of different sensors.
- 6. Provide an understanding on characteristic parameters to evaluate sensor performance.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                        | Bloom's Taxonomy |            |  |  |
|-----|-----------------------------------------------------------|------------------|------------|--|--|
|     |                                                           | Level            | Descriptor |  |  |
| CO1 | Illustrate sensors and Actuators                          | 2                | Understand |  |  |
| CO2 | Demonstrate types of fabrication techniques               | 2                | Understand |  |  |
| CO3 | Classify various types of sensors                         | 2                | Understand |  |  |
| CO4 | Interpret fabrication process and to comprehend actuators | 3                | Apply      |  |  |
| CO5 | Identify design and optimisation techniques               | 2                | Understand |  |  |
| CO6 | Explain interfacing methods                               | 2                | Understand |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 1    | 2    | 1    |
| CO2   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO3   | 3                                                                                        | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | 1    |
| CO4   | 3                                                                                        | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO5   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | 1    |
| CO6   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |

|                                                           | Course Contents                                                                                                                                                                                                                                                                                                                  |                |                |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| UNIT-I                                                    | Introduction to Sensors and Actuators                                                                                                                                                                                                                                                                                            | Hrs.           | COs            |
|                                                           | Basics of Energy Transformation: Transducers, Sensors and Actuators,<br>Understanding of thin film physics: Application in MOSFET and its<br>variants.                                                                                                                                                                           | 6              | CO1            |
| UNIT-II                                                   | Fabrication Techniques                                                                                                                                                                                                                                                                                                           | Hrs.           | CO             |
|                                                           | Thin Film Deposition Techniques: Chemical Vapor Deposition (APCVD,<br>LPCVD, UHVCVD, PECVD, ALCVD, HPCVD, MOCVD).<br>Thin Film Deposition Techniques: Physical Vapor Deposition (Thermal<br>Deposition, E-beam Evaporation, Sputtering, Pulsed Laser Deposition)                                                                 | 7              | CO2            |
| UNIT-III                                                  | Sensors                                                                                                                                                                                                                                                                                                                          | Hrs.           | CO             |
|                                                           | Basics understanding of Photolithography for pattering layer. Detailed<br>overview of Etching methods. Understanding various gas sensors: Optical<br>gas sensor, Metal oxide semiconductor gas sensor, Field effect transistor<br>gas sensor, Piezoelectric gas sensor, Polymer gas sensor, Nano-structured<br>based gas sensors | 10             | CO3            |
| UNIT-IV                                                   | Design and fabrication                                                                                                                                                                                                                                                                                                           | Hrs.           | CO             |
|                                                           | Design and fabrication process of Microsensors: Force Sensors, Pressure<br>Sensors, Strain gauges and practical applications. Explain working<br>principles of Actuators. Piezoelectric and Piezoresistive actuators,<br>micropumps and micro actuators with practical applications                                              | 10             | CO4            |
| UNIT-V                                                    | Design Methods                                                                                                                                                                                                                                                                                                                   | Hrs.           | CO             |
|                                                           | Understanding basics of microfluidics to assist Photomask design using<br>Clewin Software, pattern transfer techniques, PDMS moulding and<br>degassing, device bonding techniques. Simulation, Optimization and<br>characterization of various sensors using COMSOL Multiphysics                                                 | 8              | CO5            |
| UNIT-VI                                                   | Interfacing with controllers                                                                                                                                                                                                                                                                                                     | Hrs.           | CO             |
|                                                           | Understanding of Sensor Interfacing with Microprocessor to build<br>electronic system. Static and Dynamic Characteristic Parameters for<br>Sensors and Actuators, Calibration of Sensor based electronics systems.                                                                                                               | 7              | CO6            |
| <b>Text Books</b>                                         |                                                                                                                                                                                                                                                                                                                                  |                |                |
| sensors, Spi<br>[T2] Micros<br>(ISBN 10 -(<br>[T3] Sensor | ors and Signal Conditioning" Wiley-Blackwell, 2008 Jacob Fraden, Handbook<br>ringer, Stefan Johann Rupitsch.( ISBN-10. 9780471332329)<br>system Design, Kluwer Academic Publisher, 2001 J.D. Plummer, M.D. Deal, F<br>0792372468)<br>s and Actuators: Engineering System Instrumentation, Second Edition : de Sil                | P.G. Gri       | ffin           |
| [T4] Marks                                                | 978-1466506817)<br>Standard Handbook for Mechanical Engineers, 12th Edition <u>Ali M. Sadegh, I</u><br><u>Ph.D.</u> (ISBN: 9781259588501)                                                                                                                                                                                        | <u>Ph.D. W</u> | <u>/illiam</u> |
| References                                                | •                                                                                                                                                                                                                                                                                                                                |                |                |
| [R2] Piezoe                                               | n VLSI Technology, Pearson Education, 2001 S.M. Sze (Ed) (ISBN 10: 01303)<br>lectric Sensors and Actuators: Fundamentals and Applications, Springer, 2018<br>3-3-662-57534-5)                                                                                                                                                    |                | -              |
| <b>E-Reference</b>                                        | es                                                                                                                                                                                                                                                                                                                               |                |                |
| [E1] https:/                                              | //archive.nptel.ac.in/courses/108/108/108108147/                                                                                                                                                                                                                                                                                 |                |                |

## **EE411B: CIRCUIT ANALYSIS FOR ANALOG DESIGNERS**

| <b>Teaching Scheme</b> |    | Examination Scheme |           |
|------------------------|----|--------------------|-----------|
| Lectures:              | NA | NPTEL Assignment:  | 25 Marks  |
|                        |    | NPTEL Exam:        | 75 Marks  |
| Credits:               | 3  | Total:             | 100 Marks |

#### **Prerequisite Course:**

1. Engineering mathematics

2. Electric network analysis

3. Signals and Systems

#### **Course Objectives**

The course is intended to cover topics in circuit analysis that an analog designer uses on a daily basis. After a refresher and building background in linear-time invariant networks, it introduces aspiring analog designers to more advanced topics like inter-reciprocal networks, analog filters, noise analysis of circuits, transmission lines and distributed circuits, and the analysis of circuits with weak non-linearities. Another important topic, which is not covered in this course due to paucity of time, is that of the study of time-varying circuits. This topic is covered in the course ``Introduction to Time-Varying Electrical Networks'', also on NPTEL.

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                           | Bloom's Taxonomy |            |  |  |
|-----|------------------------------------------------------------------------------|------------------|------------|--|--|
|     | Course outcome (5)                                                           | Level            | Descriptor |  |  |
| CO1 | Solve Tellegen's Theorem and Modified Nodal Analysis                         | 3                | Apply      |  |  |
| CO2 | Study Reciprocity Theorem and Butterworth Approximation and its Filters      | 3                | Apply      |  |  |
| CO3 | Analyze High Order Filters and Noise in Electronic Circuits                  | 4                | Analyze    |  |  |
| CO4 | Apply Bode's Noise Theorem and Telegrapher's Equation in Electrical Circuits | 3                | Apply      |  |  |
| CO5 | Understand Smith Chart used in Harmonics                                     | 2                | Understand |  |  |
| CO6 | Analyze the weak non-linearities in circuits having Harmonic Distortion      | 4                | Analyze    |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 2   | 1   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 2    | 2    |
| CO2 | 3   | 3   | 2   | 2   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 2    | 1    |
| CO3 | 3   | 3   | 2   | 3   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 2    | 2    |
| CO4 | 3   | 3   | 2   | 3   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 2    | 2    |
| CO5 | 3   | 3   | 2   | 2   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 2    | 2    |
| CO6 | 3   | 3   | 2   | 3   | 0   | 2   | 1   | 1   | 1   | 2    | 1    | 3    | 3    | 2    |

| UNIT-I                                   | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 0111-1                                   | KCL, KVL, Tellegen's Theorem, Modified Nodal Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | COs |
|                                          | Motivation for the topics covered in the course, review of linearity and<br>time-variance, Review of electrical network basics, incidence matrix,<br>Tellegen's theorem, Tellegen's theorem (cntd), its use to prove reciprocity<br>in bilateral network.<br>Reciprocity in networks with controlled sources (contd), inter-reciprocal<br>networks, Modified Nodal Analysis (MNA) formulation to write network<br>equations.                                                                                                                                                                                                                                                                     | 09   | CO1 |
| UNIT-II                                  | Reciprocity Theorem and Butterworth Approximation and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |
|                                          | application in FiltersMNA formulation (contd), MNA stamps of circuit elements, Reciprocity<br>and inter-reciprocity revisited, Reciprocity and inter-reciprocity (contd),<br>the ad-joint network, Introduction to analog filtering, the Butterworth<br>approximation.Butterworth filters (continued), op-amp-RC realization of filters, Bi-<br>quadratic sections using op-amp-RC integrators, frequency and impedance<br>scaling.                                                                                                                                                                                                                                                              | 08   | CO2 |
| UNIT-III                                 | High Order Filters and Noise in Electronic Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|                                          | Cascade of bi-quads realization of high-order filters, dynamic-range scaling, Effect of non-ideal op-amps on integrator behaviour, Q-enhancement in bi-quads due to finite op-amp gain-bandwidth product.<br>Trans-conductance-capacitance filters, Introduction to noise in electronic circuits, Noise in RLC circuits, Nyquist's theorem, Bode's Noise Theorem.                                                                                                                                                                                                                                                                                                                                | 06   | CO3 |
| UNIT-IV                                  | Bode's Noise Theorem and Telegrapher's Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |
|                                          | Bode's noise theorem (contd), input referred noise sources in networks,<br>Input-referred noise sources (contd) - equivalent noise voltage and current<br>sources, Equivalent noise sources, noise factor.<br>Introduction to distributed networks, the ideal transmission line and<br>Telegrapher's equations, Transmission line circuit analysis, the reflection                                                                                                                                                                                                                                                                                                                               | 06   | CO4 |
|                                          | coefficient, open- and short-circuited lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |
| UNIT-V                                   | Smith Chart and Harmonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |
| UNIT-V                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08   | CO5 |
| UNIT-V<br>UNIT-VI                        | Smith Chart and HarmonicsThe Smith chart (introduction), the need for scattering parameters,<br>Scattering matrices of simple elements, Scattering matrices properties,<br>measurement of a one-port.<br>Scattering matrices (contd), the vector network analyzer, principle behind<br>calibration, Weak non-linearity in electronic circuits, harmonic distortion,                                                                                                                                                                                                                                                                                                                              | 08   | CO5 |
|                                          | Smith Chart and HarmonicsThe Smith chart (introduction), the need for scattering parameters,<br>Scattering matrices of simple elements, Scattering matrices properties,<br>measurement of a one-port.<br>Scattering matrices (contd), the vector network analyzer, principle behind<br>calibration, Weak non-linearity in electronic circuits, harmonic distortion,<br>HD2 and IM2.                                                                                                                                                                                                                                                                                                              | 08   | CO5 |
|                                          | Smith Chart and HarmonicsThe Smith chart (introduction), the need for scattering parameters,<br>Scattering matrices of simple elements, Scattering matrices properties,<br>measurement of a one-port.<br>Scattering matrices (contd), the vector network analyzer, principle behind<br>calibration, Weak non-linearity in electronic circuits, harmonic distortion,<br>HD2 and IM2.Basics of Harmonic DistortionHarmonic distortion (contd), third-order distortion and inter-modulation,<br>Analysis of weak non-linearities in circuits using the method of current<br>injection, Method of current-injection (contd), application to analysis of<br>distortion in a negative feedback system. |      |     |
| UNIT-VI<br>E-reference<br>[E1] https://a | Smith Chart and HarmonicsThe Smith chart (introduction), the need for scattering parameters,<br>Scattering matrices of simple elements, Scattering matrices properties,<br>measurement of a one-port.<br>Scattering matrices (contd), the vector network analyzer, principle behind<br>calibration, Weak non-linearity in electronic circuits, harmonic distortion,<br>HD2 and IM2.Basics of Harmonic DistortionHarmonic distortion (contd), third-order distortion and inter-modulation,<br>Analysis of weak non-linearities in circuits using the method of current<br>                                                                                                                        | 06   |     |

| EE411 C: Industrial Automa | tion a | and ( | Control |
|----------------------------|--------|-------|---------|
|----------------------------|--------|-------|---------|

| Teaching Scheme       | <b>Examination Scheme</b> |           |
|-----------------------|---------------------------|-----------|
| Lectures: 3 Hrs./Week | NPTEL Assignment:         | 25 Marks  |
|                       | NPTEL Exam:               | 75 Marks  |
| Credits: 3            | Total:                    | 100 Marks |

#### Credits: 3

#### **Prerequisite Course:**

- 1. Basic knowledge of Electronics and Computer
- 2. Basic knowledge of sensors and power supply
- 3. Basic concept of control system.

#### **Course Objectives**

- 1. Understand Automation & System Overview
- 2. Understand Different functionalities of PLC & SCADA
- 3. Understanding of the Features of Hydraulic and Pneumatics

### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                          | Bloor | n's Taxonomy  |
|-----|-------------------------------------------------------------|-------|---------------|
|     |                                                             | Level | Descriptor    |
| CO1 | Infer the fundamental of Industrial Automation              | 2     | Understanding |
| CO2 | Analyze different measurement techniques and devices.       | 4     | Analyzing     |
| CO3 | Apply Control Strategies to Industrial Process              | 3     | Applying      |
| CO4 | Prepare PLC Ladder Program for the given application.       | 3     | Applying      |
| CO5 | Interface the given I/O devices with appropriate PLC module | 3     | Applying      |
| CO6 | Infer the fundamentals of SCADA system & its Applications   | 2     | Understanding |

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1        | 3   | 3   | 2   | 3   | 3   | 3   | 2   | -   | -   | 2    | 3    | 3    | 3    | 3    |
| CO2        | 3   | 3   | 3   | 3   | 3   | 2   | -   | -   | -   | 3    | 2    | 1    | 3    | 3    |
| CO3        | 3   | 3   | 3   | 3   | 3   | 2   | -   | -   | -   | 3    | 2    | 2    | 3    | 3    |
| CO4        | 3   | 3   | 2   | 3   | 3   | 2   | -   | -   | -   | 2    | 1    | 1    | 3    | 3    |
| CO5        | 2   | 2   | 2   | 1   | 2   | 2   | -   | -   | -   | 2    | 1    | -    | 3    | 3    |
| <b>CO6</b> | 3   | 3   | 3   | 3   | 3   | 2   | -   | -   | -   | 2    | 2    | 3    | 3    | 3    |

|                                         | Course Contents                                                                                                                                                                                                                                                                                                                                                         |       |     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| UNIT-I                                  | Introduction to Industrial Automation                                                                                                                                                                                                                                                                                                                                   | Hrs.  | СО  |
|                                         | Need & Role of Automation, Types of Industrial Automation System,<br>Architecture of Industrial Automation Systems                                                                                                                                                                                                                                                      | 06    | CO1 |
| UNIT-II                                 | Measurement System                                                                                                                                                                                                                                                                                                                                                      |       |     |
|                                         | Measurement Systems Specifications, Temperature Measurement,<br>Pressure and Force Measurement, Displacement & Speed Measurement,<br>Flow Measurement, Measurement of Level, Humidity and pH,Signal<br>Conditioning Circuits,Errors and Calibration                                                                                                                     | 08    | CO2 |
| UNIT-III                                | Industrial Process and Control                                                                                                                                                                                                                                                                                                                                          |       |     |
|                                         | Introduction to Automatic Control,P-I-D Control,PID Control<br>Tuning,Feedforward Control Ratio Control                                                                                                                                                                                                                                                                 | 08    | CO3 |
| UNIT-IV                                 | Programmable Logic Control                                                                                                                                                                                                                                                                                                                                              |       |     |
|                                         | Introduction to Sequence/Logic Control,Programmable Logic<br>Control,Time Delay Systems and Inverse Response Systems,Special<br>Control Structures,Process Control,Introduction to Sequence Control,<br>PLC,RLL Sequence Control, Scan Cycle, Simple RLL<br>Programs,Sequence Control,More RLL Elements, RLL Syntax,A<br>Structured Design Approach to Sequence Control | 08    | CO4 |
| UNIT-V                                  | Interfacing PLC to Hydraulic, Pneumatic                                                                                                                                                                                                                                                                                                                                 |       |     |
|                                         | PLC Hardware Environment,Flow Control Valves,Hydraulic Control<br>Systems - I, Hydraulic Control Systems - II, Industrial Hydraulic<br>Circuit,Pneumatic Control Systems - I,Pneumatic Systems - II, Energy<br>Savings with Variable Speed Drives,Introduction To CNC Machines                                                                                          | 06    | CO5 |
| UNIT-VI                                 | Supervisory Control & Data Acquisition (SCADA)                                                                                                                                                                                                                                                                                                                          |       |     |
|                                         | General definition & SCADA Components. Need of SCADA system,<br>application & benefits, Communications in SCADA, The Fieldbus<br>Network, Higher Level Automation Systems                                                                                                                                                                                               | 06    | CO6 |
| ISBN 13: 9                              |                                                                                                                                                                                                                                                                                                                                                                         |       |     |
| Reference                               |                                                                                                                                                                                                                                                                                                                                                                         |       |     |
| Gupta Penn<br>[R2] Hydra<br>[R3] Electr | ammable logic controllers & Industrial Automation- Madhuchandra Mitra, Sa<br>ram International Pvt. Ltd., Fourth reprint, 2012,ISBN NO 978-8187972631<br>aulic Control Systems, Herbert E. Merritt, Wiley, 1991,ISBN: 978-0-471-596<br>ric Motor Drives, Modelling, Analysis and Control, R. Krishnan, Prentice Ha<br>[0-13-0910147                                     | 517-2 |     |
| <b>E-Referen</b>                        |                                                                                                                                                                                                                                                                                                                                                                         |       |     |
|                                         | //onlinecourses.nptel.ac.in/noc24_ee56/course<br>//archive.nptel.ac.in/courses/108/105/108105063/                                                                                                                                                                                                                                                                       |       |     |

# **EE411 D: Problem Solving through programming in C**

| Teachi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng Scheme                                                                         | <b>Examination Scheme</b> | :     |              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|-------|--------------|--|--|--|--|--|
| Lectur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es: NA                                                                            | NPTEL Assignment:         |       | 25 Marks     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   | NPTEL Exam:               |       | 75 Marks     |  |  |  |  |  |
| Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s: 3                                                                              | Total:                    |       | 100 Marks    |  |  |  |  |  |
| Prerequisite Course: <ol> <li>Analytical &amp; Logical skills</li> <li>Fundamentals of C programming</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                           |       |              |  |  |  |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Objectives                                                                        |                           |       |              |  |  |  |  |  |
| <ol> <li>To get acquainted with the fundamental principles, and concepts of Computer Hardware and Software</li> <li>To understand basics of programming and problem solving</li> <li>To build basic programs in C</li> <li>To develop competency for the design, coding and debugging</li> <li>To build the programming skills using C to solve real world problems</li> <li>To learn and understand the basic concepts and use of system software and IDE</li> <li>Course Outcomes (COs):</li> <li>After successful completion of the course, student will be able to</li> </ol> |                                                                                   |                           |       |              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Course Outcome (s)                                                                |                           | Bloor | n's Taxonomy |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                           | Level | Descriptor   |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Demonstrate the basic knowledge of comp<br>software.                              |                           | 2     | Understand   |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To formulate simple algorithms for arithm problems.                               | netic and logical         | 3     | Apply        |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To translate the algorithms to programs (in                                       | n C language).            | 3     | Apply        |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To test and execute the programs and correct syntax and logical4Analyzeerrors.4   |                           |       |              |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evaluate programming logics to solve the                                          | problem.                  | 3     | Apply        |  |  |  |  |  |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ability to apply solving and logical skills language and also in other languages. | to programming in C       | 4     | Analyze      |  |  |  |  |  |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 2                                                                                        | 3   | 1   | 1   | 3   | 2   | -   | -   | I   | 1    | -    | 1    | 1    | 1    |
| CO2    | 2                                                                                        | 3   | 2   | 2   | 3   | 2   | -   | -   | -   | 1    | -    | 1    | 2    | 2    |
| CO3    | 2                                                                                        | 3   | 1   | 2   | 3   | 2   | -   | -   | -   | -    | -    | 1    | -    | -    |
| CO4    | 2                                                                                        | 3   | 2   | 2   | 3   | -   | -   | -   | Ι   | 2    | -    | 1    | 1    | 2    |
| CO5    | 2                                                                                        | 2   | 1   | 1   | 2   | 2   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO6    | 2                                                                                        | 3   | 2   | 2   | 3   | 2   | -   | -   | -   | 1    | _    | 1    | -    | 1    |

|                                                                     | Course Contents                                                                                                                                                                                                                                                                                                                         |          |          |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--|--|--|--|
| UNIT-I                                                              | Introduction to Computing & C Programming                                                                                                                                                                                                                                                                                               | Hrs.     | COs      |  |  |  |  |
|                                                                     | <ul> <li>Computer Systems-Hardware and Software, Computer Languages,<br/>Algorithm, Flowchart, Representation of Algorithm and Flowchart with<br/>examples.</li> <li>History of C, Features of C, Structure of C Program, Character Set, C<br/>Tokens-Keywords, Identifiers, Constants, Variables, Data types,<br/>Operators</li> </ul> | 8        | CO1      |  |  |  |  |
| UNIT-II                                                             | Pseudo code & Programming Process                                                                                                                                                                                                                                                                                                       | Hrs.     | CO       |  |  |  |  |
|                                                                     | Introduction to Problem Solving through programs, Flowcharts/Pseudocodes, the compilation process, Syntax and Semantic errors, VariablesandDataTypes .                                                                                                                                                                                  | 8        | CO2      |  |  |  |  |
| UNIT-III                                                            | Conditional statements                                                                                                                                                                                                                                                                                                                  | Hrs.     | CO       |  |  |  |  |
|                                                                     | Arithmetic expressions, Relational Operations, Logical expressions;<br>Introduction to Conditional Branching,Conditional Branching and<br>Iterative Loops.                                                                                                                                                                              | 8        | CO3      |  |  |  |  |
| UNIT-IV                                                             | Arrays & strings                                                                                                                                                                                                                                                                                                                        | Hrs.     | CO       |  |  |  |  |
|                                                                     | Arranging things : Arrays, 2-D arrays, 3-D arrays, Character Arrays and Strings.                                                                                                                                                                                                                                                        | 7        | CO4      |  |  |  |  |
| UNIT-V                                                              | Functions                                                                                                                                                                                                                                                                                                                               | Hrs.     | CO       |  |  |  |  |
|                                                                     | Basic Algorithms including Numerical Algorithms, Functions and<br>Parameter Passing by Value, Passing Arrays to Functions, Call by<br>Reference.                                                                                                                                                                                        | 7        | CO5      |  |  |  |  |
| UNIT-VI                                                             | Pointers & Structures                                                                                                                                                                                                                                                                                                                   | Hrs.     | CO       |  |  |  |  |
|                                                                     | Recursion, Structures and Pointers, Self-Referential Structures andIntroductiontoLists.                                                                                                                                                                                                                                                 | 7        | CO6      |  |  |  |  |
| Text Books                                                          |                                                                                                                                                                                                                                                                                                                                         |          |          |  |  |  |  |
| [T1] Compu                                                          | uter Programming with C, Special Edition-MRCET, Mc Graw Hill Publishe                                                                                                                                                                                                                                                                   | ers 2017 | 7.       |  |  |  |  |
| [T2] Compu                                                          | uter Science: A Structured Programming Approach Using C, B.A.Forouzan                                                                                                                                                                                                                                                                   | and R.I  | <b>.</b> |  |  |  |  |
| Gilberg, Th                                                         | ird Edition, Cengage Learning.                                                                                                                                                                                                                                                                                                          |          |          |  |  |  |  |
| References                                                          | :                                                                                                                                                                                                                                                                                                                                       |          |          |  |  |  |  |
| [R1] The C                                                          | Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI.                                                                                                                                                                                                                                                                         |          |          |  |  |  |  |
| [R2] Comp                                                           | uter Programming, E.Balagurusamy, First Edition, TMH.                                                                                                                                                                                                                                                                                   |          |          |  |  |  |  |
| [R3] C and                                                          | Data structures – P. Padmanabham, Third Edition, B.S. Publications                                                                                                                                                                                                                                                                      |          |          |  |  |  |  |
| [R4] Progra                                                         | umming in C, Ashok Kamthane. Pearson Education India.                                                                                                                                                                                                                                                                                   |          |          |  |  |  |  |
| [R5] Let us C, Yashwanth Kanethkar, 13th Edition, BPB Publications. |                                                                                                                                                                                                                                                                                                                                         |          |          |  |  |  |  |
| []                                                                  |                                                                                                                                                                                                                                                                                                                                         |          |          |  |  |  |  |
| E-Reference                                                         | ces                                                                                                                                                                                                                                                                                                                                     |          |          |  |  |  |  |
| E-Reference                                                         | ces<br>//onlinecourses.nptel.ac.in/noc24_cs42/preview (Problem Solving through                                                                                                                                                                                                                                                          | prograr  | nming    |  |  |  |  |

# **EE412 A: Fundamentals of Semiconductor Devices**

| Teachi                                                                                                                                                                                                                                                                                                                                                                | ng Scheme                                                                                         | <b>Examination Scheme</b> |       |            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|-------|------------|--|--|--|--|--|
| Lectur                                                                                                                                                                                                                                                                                                                                                                | es: NA                                                                                            | NPTEL Assignment:         |       | 25 Marks   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | NPTEL Exam:               |       | 75 Marks   |  |  |  |  |  |
| Credit                                                                                                                                                                                                                                                                                                                                                                | s: 3                                                                                              | Total:                    |       | 100 Marks  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       | <b>quisite Course:</b><br>Basic Electronics                                                       |                           |       |            |  |  |  |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                | e Objectives                                                                                      |                           |       |            |  |  |  |  |  |
| <ol> <li>To provide the knowledge of basic electronic components and their applications</li> <li>To understand working and applications of Analog and Digital Integrated Circuits.</li> <li>To explore students to the fundamentals of electronic communication.</li> </ol> Course Outcomes (COs): After successful completion of the course, student will be able to |                                                                                                   |                           |       |            |  |  |  |  |  |
| Course Outcome (s) Bloom's Taxonomy                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                           |       |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                           | Level | Descriptor |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                   | Classify basics of semiconductor devices of energy bands                                          | including the physics     | 2     | Understand |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                   | Design and analyze doping and carrier stat<br>leading up to the understanding of commo<br>devices |                           | 3     | Apply      |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                   | Analyze the opto-electronic devices such a photodetectors and LEDs.                               | as solar cells,           | 4     | Analyze    |  |  |  |  |  |
| <b>CO4</b>                                                                                                                                                                                                                                                                                                                                                            | Analyze the semiconductors are able to gra                                                        | asp the content           | 4     | Analyze    |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                   | Analyze practical and commercial technol around us and which use semiconductor de                 | 6                         | 4     | Analyze    |  |  |  |  |  |
| CO6                                                                                                                                                                                                                                                                                                                                                                   | Identify the here will be enough food for t<br>advanced learners such as PhD students an          | -                         | 3     | Apply      |  |  |  |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO2   | 3                                                                                        | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO3   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | 1    |
| CO4   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | 1    |
| CO5   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO6   | 3                                                                                        | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |

|                   | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--|--|--|--|
| UNIT-I            | Introduction to Semiconductor Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.   | COs |  |  |  |  |
|                   | Importance of semiconductor devices and their diverse applications.<br>Introduction to semiconductors, concept of energy bands and how bands<br>form. Effective mass of electrons, E-k diagram. Concept of holes. Concept<br>of Fermi level, Fermi-Dirac distribution. Doping (extrinsic & intrinsic<br>semiconductor), density of states. Equilibrium electron-hole concentration,<br>temperature-dependence. Carrier scattering and mobility, velocity saturation,<br>Drift-diffusion transport               | 6      | CO1 |  |  |  |  |
| UNIT-II           | N-N Junction diode statics and dynamic Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.   | CO  |  |  |  |  |
|                   | Excess carrier decay & recombination, charge injection, continuity equation,<br>quasi-Fermi level . p-n junction: static behaviour (depletion width, field<br>profile), p-n junction under forward & reverse bias, current equations,<br>generation-recombination current and reference to typical devices                                                                                                                                                                                                      | 6      | CO2 |  |  |  |  |
| UNIT-III          | Zener Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs.   | CO  |  |  |  |  |
|                   | Zener and avalanche breakdown, Capacitance-voltage profiling,<br>metal/semiconductor junction – Ohmic and Schottky contacts, reference to<br>device applications. MOS capacitor, charge/field/energy bands,<br>accumulation, inversion, C-V (high and low frequencies), deep depletion,<br>Real MOS cap: Flat-band & threshold voltage, Si/SiO2 system.                                                                                                                                                         | 6      | CO3 |  |  |  |  |
| UNIT-IV           | Metal-oxide-Semiconductor Field-Effect Transistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs.   | CO  |  |  |  |  |
|                   | MOSFET: structure and operating principle, derivation of I-V, gradual channel<br>approximation, substrate bias effects, sub-threshold current and gate oxide<br>breakdown. Control of threshold voltage, short channel effects. Moore's Law<br>and CMOS scaling. Introduction to compound semiconductors & alloys,<br>commonly used compound semiconductors, heterostructure band diagrams<br>and basics of MODFET & HEMT, introduction to quantum well, applications<br>of heterostructure device technologies | 6      | CO4 |  |  |  |  |
| UNIT-V            | Bipolar Junction Transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs.   | CO  |  |  |  |  |
|                   | BJT: working principle, DC parameters and current components, base transport factor, Early Effect, charge control equation & current gain, need for HBT. Applications of BJTs/HBTs in real-life. (Basics of) - transistors for high-speed logic, transistors for high frequency (RF), transistors for high power switching, transistors for memories, transistors for low noise, transistors for the future.                                                                                                    | 6      | CO5 |  |  |  |  |
| UNIT-VI           | Solar Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.   | CO  |  |  |  |  |
|                   | Solar cells: principle, efficiency, Fill factor, Shockley-Quiesser limit, silicon<br>solar cells, multi-junction solar cell, Photodetectors: operation, figures of<br>merit (responsivity, QE, bandwidth, noise, Detectivity), examples from IR to<br>UV detectors. LEDs: working principle, radiative/non-radiative<br>recombination, various types of efficiencies (EQE, WPE, IQE), light<br>extraction and escape cone. Blue LED and the Nobel Prize, visible LEDs and<br>chromaticity.                      | 6      | CO6 |  |  |  |  |
| <b>Text Books</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |  |  |  |  |
| [T1] Ben G.       | Streetman and Sanjay Banerjee, Solid State Electronics Devices, 5 <sup>th</sup> Ed,PHI, 20                                                                                                                                                                                                                                                                                                                                                                                                                      | 01.ISB | N-  |  |  |  |  |
| 978-013149        | 07269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |     |  |  |  |  |
| 978-0131497269    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |  |  |  |  |

978-8126518678.

#### **References:**

[R1] R. S. Muller & T. I. Kamins, Device Electronics for Integrated Circuits, 3rd Edition, John Wiley & Sons, Inc., 2003., 978-0471593980.

[R2] Y. Taur & T. H. Ning, Fundamentals of Modern VLSI Devices, 2 nd Edition, Cambridge University Press 1998., ISBN-978-1107635715.

#### **E-References**

[E1]. https://onlinecourses.nptel.ac.in/noc24\_ee02/preview (Fundamentals of Semiconductor Devices)

## **EE412B:** Computer-Aided Design of Electrical Machines

| Teaching Scheme | <b>Examination Scheme</b> |           |
|-----------------|---------------------------|-----------|
| Lectures: NA    | NPTEL Assignment:         | 25 Marks  |
|                 | NPTEL Exam:               | 75 Marks  |
| Credits: 3      | Total:                    | 100 Marks |

#### **Prerequisite Course:**

- 2. Knowledge of various materials used in electrical machines.
- 3. Knowledge of types, construction and working of transformer.
- 4. Knowledge of types, construction and working of rotating electrical machines

#### **Course Objectives**

7. To understand selection of proper commercial materials for Electrical Machine design.

- 8. To understand design of transformer.
- 9. To understand design of DC machine and permanent magnet machine.
- 10. To understand design of induction motor.
- 11. To understand design of special purpose motors.
- 12. To understand uses of computer aided optimization techniques for electrical machine design.

### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                                                                                    | Bloom's Taxonomy |               |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|
|     |                                                                                                                                       | Level            | Descriptor    |  |  |
| CO1 | Select proper commercial materials for desired electrical machine design.                                                             | 2                | Understanding |  |  |
| CO2 | Calculate main dimensions and the design parameters of single phase and three phase transformer.                                      | 3                | Applying      |  |  |
| CO3 | Calculate main dimensions and the design parameters of DC machine and permanent magnet machine.                                       | 3                | Applying      |  |  |
| CO4 | Calculate main dimensions and the design parameters of three phase induction motor.                                                   | 3                | Applying      |  |  |
| CO5 | Calculate the design parameters of synchronous machines,<br>salient reluctance machines, stepper machines and axial<br>flux machines. | 3                | Applying      |  |  |
| CO6 | Understand computer aided optimization techniques for electrical machine design.                                                      | 2                | Understanding |  |  |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |    |    |     |    |    |    |    |    |      |      |      |      | ):   |
|-------|------------------------------------------------------------------------------------------|----|----|-----|----|----|----|----|----|------|------|------|------|------|
|       | PO                                                                                       | PO | PO | PO4 | PO | PO | PO | РО | PO | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|       | 1                                                                                        | 2  | 3  |     | 5  | 6  | 7  | 8  | 9  |      |      |      |      |      |
| CO1   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | -  | -  | -  | -    | -    | 1    | 2    | 1    |
| CO2   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | -  | -  | -  | -    | -    | 1    | 2    | 1    |
| CO3   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | -  | -  | -  | -    | -    | 1    | 2    | 1    |
| CO4   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | -  | I  | 1  | -    | -    | 1    | 2    | 1    |
| CO5   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | I  | I  | 1  | -    | -    | 1    | 2    | 1    |
| CO6   | 3                                                                                        | 2  | 2  | 1   | 2  | -  | -  | -  | -  | -    | -    | 1    | 2    | 2    |

|                                                                      | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                         |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|
| UNIT-I                                                               | FUNDAMENTALS AND PRINCIPLES OF ELECTRICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.                               | COs                     |
|                                                                      | <b>MACHINE DESIGN WITH EQUIVALENT CIRCUIT APPROACH</b><br>Transformers and rotating electrical machines - specifications, types,                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                         |
|                                                                      | constructional features, conducting, magnetic and insulating materials,                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                  | CO1                     |
|                                                                      | heating and cooling in electrical machines. Fundamental with ANSYS to                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                  | CO1                     |
|                                                                      | design an electrical machine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TT                                 | <u> </u>                |
| UNIT-II                                                              | TRANSFORMER DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs.                               | CO                      |
|                                                                      | Output equation with usual notations, optimum design of transformer for<br>minimum cost and loss. Design of main dimensions, core, yoke and<br>windings of transformer. Methods of cooling and tank design. Estimation of<br>no-load current, losses, efficiency and regulation of transformer, Mechanical<br>forces developed under short circuit conditions, measures to overcome this<br>effect. Introduction to Computer aided design of transformer, generalized<br>flow chart for design of transformer.          | 6                                  | CO2                     |
| UNIT-III                                                             | DESIGN OF DC MACHINES AND BRUSHLESS PERMANENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs.                               | CO                      |
|                                                                      | MAGNET MACHINES<br>Design specification, output equation, estimation of power developed by                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                         |
|                                                                      | armature, choice of specific magnetic loading and specific electric loading,                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                         |
|                                                                      | choice of armature core length and armature diameter, design of armature                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                  | CO3                     |
|                                                                      | winding, design of the field system, losses and efficiency. Fundamentals                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         |
|                                                                      | and design specification of Brushless Permanent Magnet Machines.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                         |
| UNIT-IV                                                              | INDUCTION MOTOR DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs.                               | CO                      |
|                                                                      | Output equation, specific electrical and magnetic loading, main<br>dimensions, selection of slots, stator design, stator slots, turns per phase,<br>selection of air gap, squirrel cage and wound rotor design. Calculation of<br>magnetic circuit, MMF calculations, stator teeth, stator core, effect of<br>saturation, magnetizing current, no load current and its core loss<br>component, performance calculations - losses, efficiency, temperature rise,<br>maximum torque from circle diagram.                  | 6                                  | CO4                     |
| UNIT-V                                                               | DESIGN OF SYCHRONOUS MACHINES AND SPECIAL PURPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs.                               | CO                      |
|                                                                      | MACHINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         |
|                                                                      | Design specification with fundamentals of Synchronous Machines, Salient<br>Reluctance Machines, Stepper Machines and Axial Flux Machines.                                                                                                                                                                                                                                                                                                                                                                               | 6                                  | CO5                     |
| UNIT-VI                                                              | COMPUTER AIDED DESIGN (CAD) OF ELECTRICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.                               | CO                      |
|                                                                      | MACHINES<br>Computer-Aided Design and explanation about the details of flow chart.<br>Limitations and assumptions in traditional designs, need of CAD, analysis,<br>synthesis and hybrid methods, design optimization methods, variables,<br>constraints and objective function, Fundamental with ANSYS, problem<br>formulation, ANSYS solution and post-processing, Finite Element<br>Equations, uses of commands in ANSYS and graphical user interface (GUI).                                                         | 6                                  | CO6                     |
| Text Books                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                         |
| [T1] Erdoga<br>Using<br>[T2] A.K.Sa<br>Delhi<br>[T3] R. K. 2<br>8002 | an Madenci and Ibrahim Guven-The Finite Element Method and Applications<br>g ANSYS, Springer (ISBN:9788184897463 and SCOEK Library Accession No<br>awhney – A Course in Electrical Machine Design, 10th Edition, - Dhanpat Rai<br>. (ISBN: 978-81-7700-101-3 and SCOEK Library Accession No. 65058, 6505<br>Agarwal – Principles of Electrical Machine Design, S. K.Katariya and Sons. (<br>7-12-8 and SCOEK Library Accession No. 64134, 64135)<br>Say – The Performance and Design of A.C. Machines, 3rd Edition, CBS | 5. 7046<br>and so<br>9)<br>ISBN: 9 | 1)<br>ns New<br>978-93- |

Distributors Pvt. Ltd. (ISBN: 81-239-1027-4 and SCOEK Library Accession No. 64080) [T5] Prof. Sham Tickoo – AutoCAD 2021 for Engineers and Designers (ISBN: 978-93-8998-97-2) and

SCOEK Library Accession No. 64570, 64571)

#### **References:**

- [R1] CADD Centre India-ANSYS Reference Guide (SCOEK Library Accession No. 0024404)
- [R2] K. G. Upadhyay- Design of Electrical Machines, New age International (P) Limited, Publishers London (ISBN:978-81-224-2282-5, and SCOEK Library Accession No. 64876)
- [R3] Indrajit Dasgupta Design of Transformers, Mc Graw Hill Education (ISBN-13:978-0-07-043640-4 and SCOEK Library Accession No. 64309)
- [R4] T. A. Lipo, "Introduction to AC Machine Design", IEEE Press Wiley Publications, 2017.
- [R5] J. R. Hendershot and T. J. E. Miller, "Design of Brushless Permanent Magnet Motors", Motor Design Books LLC, 2nd edition, 2010.
- [R6] J. Pyrhonen, T. Jokinen, and V. Hrabovcova, "Design of Rotating Electrical Machines", John Wiley and Sons Inc., 2nd edition, 2013.
- [R7] R. Krishnan, "Switched Reluctance Motor Drives", CRC Press LLC, USA, 2001.
- [R8] Shanmugasundaram a Electrical Machine Design Data Book / Ashanmugasundaram ; 2nd Ed. ; Vol. ; : New Age, 2015 (SCOEK Library Accession No. 64876, 64877, 64878 and 64879)

#### **E-References**

- [E1] https://nptel.ac.in/courses/108102372
- [E2] https://onlinecourses.nptel.ac.in/noc24\_ee50
- [E3] https://onlinecourses.nptel.ac.in/noc23\_ee140

#### 2020 Pattern

# EE412 C: Introduction to Industry 4.0 & Industrial Internet of Things

|          | ng Scheme                                      | <b>Examination Scheme</b> |            |               |
|----------|------------------------------------------------|---------------------------|------------|---------------|
| Lectur   | es: NA                                         | NPTEL Assignment:         |            | 25 Marks      |
|          |                                                | NPTEL Exam:               |            | 75 Marks      |
| Credits  | :: 3                                           | Total:                    |            | 100 Marks     |
| Prerec   | uisite Course: Basic knowledge of comput       | ter and internet.         |            |               |
|          | Basic knowledge of Industr                     | ial Automation and Cont   | rol        |               |
| Course   | Objectives                                     |                           |            |               |
| 1. Un    | derstand the concepts of Automation system     |                           |            |               |
|          | lerstand the concepts of Industry 4.0, differe |                           | Intelliger | nce.          |
|          | lerstand the concepts of Industrial IIOT and   |                           | 0          |               |
|          | lerstand the Real case studies using IIOT in   |                           |            |               |
|          | Outcomes (COs):                                | 5                         |            |               |
| After su | accessful completion of the course, student v  | will be able to           |            |               |
|          | Course Outcome (s)                             |                           | Bloo       | om's Taxonomy |
|          |                                                |                           | Level      | Descriptor    |
| CO1      | Categorize and describe major types of Au      | atomation System          | 2          | Understand    |
| CO2      | Describe Automatic Control and Supervise       | ory Control               | 2          | Understand    |
| CO3      | Infer the Industrial IoT Business Model and    | nd Reference              | 2          | Understand    |
| 00       | Architecture of IOT-Business Models.           |                           |            |               |
| CO4      | Analyse Introduction Machine Learning a        | nd Data Science.          | 3          | Apply         |
| 007      | Illustrate the various security applications   |                           | 3          | Apply         |
| CO5      | Computing and Cloud Computing in Indu          | strial IOT (IIOT).        |            |               |
| COL      | Identify the suitable IIOT schemes for var     | ious industrial           | 3          | Apply         |
| CO6      | domains.                                       |                           |            |               |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                                                        | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | 2    | -    |
| CO2   | 3                                                                                        | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | 2    | -    |
| CO3   | 3                                                                                        | 2   | 2   | 1   | -   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 2    |
| CO4   | 3                                                                                        | 2   | 2   | 1   | 1   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 2    |
| CO5   | 3                                                                                        | 2   | 2   | 1   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 2    |
| CO6   | 3                                                                                        | 2   | 2   | 1   | 2   | 2   | -   | -   | -   | -    | -    | 3    | 2    | 2    |

|                         | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| UNIT-I                  | Sensing & Actuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.   | COs |
|                         | Introduction: Sensing & actuation, Communication-Part I, Part II,<br>Networking-Part I, Part II Industry 4.0: Globalization and Emerging Issues,<br>The Fourth Revolution, LEAN Production Systems, Smart and Connected<br>Business Perspective, Smart Factories.                                                                                                                                                                                                                            | 4      | CO1 |
| UNIT-II                 | Basics of Industry 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs.   | CO  |
|                         | Industry 4.0: Cyber Physical Systems and Next Generation Sensors,<br>Collaborative Platform and Product Lifecycle Management, Augmented<br>Reality and Virtual Reality, Artificial Intelligence, Big Data and Advanced<br>Analysis.                                                                                                                                                                                                                                                          | 4      | CO2 |
| UNIT-III                | Cyber security in industry 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.   | CO  |
|                         | Cybersecurity in Industry 4.0, Basics of Industrial IOT: Industrial Processes-<br>Part I, Part II, Industrial Sensing & Actuation, Industrial Internet Systems<br>IOT-Introduction, Industrial IoT: Business Model and Reference<br>Architecture: IOT-Business Models-Part<br>I, Part II, IOT Reference Architecture-Part I, Part II.                                                                                                                                                        | 8      | CO3 |
| UNIT-IV                 | Machine learning and data science                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs.   | CO  |
|                         | Industrial IoT- Layers: IIOT Sensing-Part I, Part II, IOT Processing-Part I, Part II, IIoT Communication-Part I, Industrial IoT- Layers: IIoT Communication-Part II, Part III, Part III, IIoT Networking-Part I, Part II, Part III, Industrial IoT: Big Data Analytics and Software Defined Networks, IIoT Analytics - Introduction, Machine Learning and Data Science - Part I, Part II, R and Julia Programming, Data Management with Hadoop.                                              | 8      | CO4 |
| UNIT-V                  | Industrial IOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs.   | CO  |
|                         | Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in<br>IIoT-Part I, Part II, Data Centre Networks, Industrial IoT: Security and Fog<br>Computing: Cloud Computing in IIoT-Part I, Part II, Industrial IoT: Security<br>and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II,<br>Industrial IoT- Application Domains: Factories and Assembly Line, Food<br>Industry                                                                               | 8      | CO5 |
| UNIT-VI                 | IoT Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs.   | CO  |
|                         | Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory<br>Management & Quality Control, Plant Safety and Security (Including AR and<br>VR safety applications), Facility Management Industrial IoT- Application<br>Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs<br>in Industries,<br>Real case studies : Milk Processing and Packaging Industries, Manufacturing<br>Industries , Student Projects , Virtual Reality Lab, Steel Technology Lab. | 6      | CO6 |
| Text Book               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |     |
|                         | leep Bahga "Internet of Things: A Hands-On Approach" First Edition Orient Blac<br>nited - New Delhi ISBN NO 8173719543                                                                                                                                                                                                                                                                                                                                                                       | ckswan |     |
| [T2] Macie<br>[T3] Cuno | o Pfister "Getting Started with the Internet of Things." First edition Make Commu<br>978-1449393571.                                                                                                                                                                                                                                                                                                                                                                                         |        |     |
| Reference               | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |     |
| Press. ISB              | sra, A. Mukherjee, and A. Roy, 2020. Introduction to IOT First edition, Cambrid<br>N NO 1108959741.<br>Waher Learning Internet of Things "First edition published by Packet Pub Ltd IS<br>22.                                                                                                                                                                                                                                                                                                | -      |     |

## EE412D: EMBEDDED SENSING, ACTUATION AND INTERFACING SYSTEMS

|            | g Scheme Examination Scheme                                                                                               |           |                |
|------------|---------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| Lecture    |                                                                                                                           |           | 25 Marks       |
|            | NPTEL Exam:                                                                                                               |           | 75 Marks       |
| Credits:   |                                                                                                                           |           | 100 Marks      |
| -          | uisite Course:                                                                                                            |           |                |
|            | Circuit Analysis                                                                                                          |           |                |
| 2.         | Control System                                                                                                            |           |                |
| 3.         | Analog and Digital Electronics                                                                                            |           |                |
| Course     | Objectives                                                                                                                |           |                |
| 1. Tc      | develop practical technical skills among the students                                                                     |           |                |
|            | integrate various sensing, actuation units and other required act                                                         | cessories | with embedded  |
| co         | ntroller                                                                                                                  |           |                |
| 3. To      | build a complete modern embedded control system for intended appli                                                        | cations   |                |
| Course     | Outcomes (COs):                                                                                                           |           |                |
| After su   | ccessful completion of the course, student will be able to                                                                |           |                |
|            | Course Outcome (s)                                                                                                        | Bloon     | n's Taxonomy   |
|            |                                                                                                                           | Level     | Descriptor     |
| CO1        | Interpret characteristics and applications of embedded systems                                                            | 2         | Understand     |
| COI        | sensors and actuators                                                                                                     | 2         | Understand     |
|            | Apply various interfacing Aspects of Sensors and Actuators to                                                             |           |                |
| CO2        | Embedded Controller and their Communication Protocols and                                                                 |           | Apply          |
|            | advancements in Linearity Improvement and Error Reduction                                                                 |           |                |
| CO3        | Choose Advanced Techniques for Direct Interfacing of Resistive and                                                        | 3         | A              |
| CUS        | Capacitive Sensors with Embedded controller                                                                               | 3         | Apply          |
|            | Interpret Advancement in Design of Interfacing Circuits for Lossy                                                         |           |                |
| <b>CO4</b> | Capacitive Sensors and Miniaturization Technology for Smart                                                               |           | Apply          |
|            | Sensors and Actuators                                                                                                     |           |                |
|            |                                                                                                                           | 1         |                |
|            | Apply and operate Miniaturized Sensors, Actuators and their                                                               |           |                |
| CO5        | Apply and operate Miniaturized Sensors, Actuators and their<br>Interfacing Electronics and Renewable Energy Harvesters to |           | Apply          |
| CO5        | Interfacing Electronics and Renewable Energy Harvesters to                                                                |           | Apply          |
| CO5        |                                                                                                                           | 3         | Apply<br>Apply |

| Mappi | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 2                                                                                        | 2   | 2   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO2   | 2                                                                                        | 2   | 1   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO3   | 2                                                                                        | 2   | 1   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO4   | 2                                                                                        | 2   | 1   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO5   | 2                                                                                        | 2   | 2   | 2   | 1   | -   | -   | -   | -   | -    | -    | 1    | 1    | 1    |
| CO6   | 2                                                                                        | 2   | 2   | 2   | 1   | -   | -   | 1   | -   | -    | -    | 1    | 1    | 1    |

|            | Course Contents                                                                   |          |        |
|------------|-----------------------------------------------------------------------------------|----------|--------|
| UNIT-I     | Introduction to Embedded Systems, Sensors and Actuators                           | Hrs.     | COs    |
|            | Overview of embedded system; Importance of sensors, actuators and                 |          |        |
|            | interfacing circuits in embedded control system; Characteristics;                 |          |        |
|            | Applications-Various types of important sensors, actuators and their working      | 6        | CO1    |
|            | principles: e.g, thermal, mechanical, electrical, magnetic, optical, chemical,    |          |        |
|            | smart material and meta material based.                                           |          |        |
| UNIT-II    | Interfacing Aspects                                                               | Hrs.     | COs    |
|            | Signal conditioning circuits; Various Op-Amp based interfacing circuit            |          |        |
|            | implementation: Amplifier, Filter, ADC, DAC etc.; Various Serial                  |          |        |
|            | Communication protocols for interfacing. Resistive sensor examples; Non-          | 6        | CO2    |
|            | idealities in basic interfacing circuits; Linearization techniques; Error         |          |        |
|            | reduction schemes due to environmental effects and remote communication.          |          |        |
| UNIT-III   | Advanced Techniques for Direct Interfacing                                        | Hrs.     | COs    |
|            | Embedded controller-based excitation system; Direct interfacing schemes of        |          |        |
|            | various resistive sensors topologies (e.g., single, differential and bridge type) |          |        |
|            | to microcontrollers; Interfacing scheme for sensor array, Capacitive sensor       | 6        | CO3    |
|            | examples; Interfacing scheme for different capacitive sensor configurations;      |          |        |
|            | Direct interfacing schemes.                                                       |          |        |
| UNIT-IV    | Advancement in Design of Interfacing Circuits And Miniaturization                 | Hrs.     | COs    |
|            | Technology                                                                        |          |        |
|            | Lossy Capacitive sensor characteristics; Various advanced interfacing schemes     |          |        |
|            | for lossy capacitive sensor, Background of miniaturization; Miniaturized          | 6        | CO4    |
|            | device fabrication process technology for Smart sensors and actuators             |          |        |
| UNIT-V     | Interfacing Electronics and Renewable Energy Harvesters                           | Hrs.     | COs    |
|            | Various types of important MEMS sensors and actuators: Design and                 |          |        |
|            | operation; Interfacing Electronics for MEMS Devices; System-on-Chip               |          |        |
|            | integration; Applications, Various renewable energy harvesting techniques;        | 6        | CO5    |
|            | Interfacing power management circuits; Applications towards development of        |          |        |
|            | self-powered smart system                                                         |          |        |
| UNIT-VI    | Application Case Studies                                                          | Hrs.     | COs    |
|            | Application Case Studies of Embedded Sensing, Actuation and Interfacing           | -        | CO6    |
|            | System in Automotives Domain and Healthcare Domain                                | 6        |        |
| Text Book  | S:                                                                                | <u> </u> |        |
| [T1]. Nath | an Ida, 'Sensors, Actuators, and their Interfaces', 1st ed., SciTech Publishing,  | 2014,    | ISBN:  |
| 978161353  |                                                                                   |          |        |
| [T2]. Stua | rt R. Ball, 'Analog Interfacing to Embedded Microprocessor Systems', El           | sevier,  | 2004,  |
|            | 0750677233, 0750677236                                                            | ,        | -      |
| [T3]. B. G | eorge, J. Roy, V. Jagadeesh Kumar, S. C. Mukhopadhyay, 'Advanced Interfacin       | g Tech   | niques |
|            | s', 1st ed., Springer, 2017, ISBN:9783319553696, 3319553690                       | -        | -      |
|            | G. Webster and Ramón Pallás-Areny, 'Sensors and Signal Conditioning', John V      | Viley &  | Sons,  |
|            | 00, ISBN:9781118585931, 1118585933                                                | 5        | ,      |
| Reference  |                                                                                   |          |        |
| [R1]. Marc | Madou, 'Fundamentals of Microfabrication and Nanotechnology', CRC press, 3        | 3rd ed., | 2018,  |

ISBN:9781351990615, 1351990616

[R2]. S. Nihtianov, A. Luque, 'Smart Sensors and MEMS', 1st ed., Elsevier, 2014, ISBN:9780081020562, 0081020562

[R3]. Bela G Liptak, 'Instrument Engineers Handbook' CRC press, 4th ed., 2003, ISBN:9781000820621, 1000820629

[R4]. William B. Ribbens, 'Understanding Automotive Electronics: An Engineering Perspective', Elsevier, 8th ed., 2017, ISBN:9780080481494, 0080481493

### **E-References**

[E1]. <u>https://onlinecourses.nptel.ac.in/noc24\_ee68/preview</u> Embedded Sensing, Actuation and Interfacing Systems, By Prof. Banibrata Mukherjee | IIT Kharagpur

[E2]. <u>https://nptel.ac.in/courses/108105376</u> Embedded Sensing, Actuation and Interfacing Systems, By Prof. Banibrata Mukherjee | IIT Kharagpur

## **EE413 A: EV - Vehicle Dynamics and Electric Motor Drives**

| Teaching Scheme | Examination Scheme |           |
|-----------------|--------------------|-----------|
| Lectures: NA    | NPTEL Assignment:  | 25 Marks  |
|                 | NPTEL Exam:        | 75 Marks  |
|                 | Total:             | 100 Marks |

#### Credits: 2

#### **Prerequisite Course:**

1. Basic Knowledge of Electric and Hybrid Vehicles

#### **Course Objectives**

- 1. Understand the operation of battery driven electric vehicles.
- 2. Understand the vehicle dynamics, Motors, Power Electronics, PWM, Control
- 3. Analyze and demonstrate EV technologies through Matlab Simulink

#### **Course Outcomes (COs):**

After successful completion of the course, student will be able to

|     | Course Outcome (s)                                                          | Bloon | n's Taxonomy |
|-----|-----------------------------------------------------------------------------|-------|--------------|
|     |                                                                             | Level | Descriptor   |
| CO1 | Analyze Vehicle Dynamics: Modelling and Simulation                          | 4     | Analyzing    |
| CO2 | Apply Fundamental of Drives and Power Electronics to DC Drives              | 3     | Applying     |
| CO3 | Apply Basics of Induction Motor and V/f Control                             | 3     | Applying     |
| CO4 | Analyze Realization of Power Electronic Converters and PWM for<br>IM drives | 4     | Analyzing    |
| CO5 | Evaluate Modelling of PMSM Drives                                           | 5     | Evaluating   |
| CO6 | Evaluate Vector Control of PMSM Drives                                      | 5     | Evaluating   |

| Mappin | Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |      |      |      |      |      |
|--------|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        | PO1                                                                                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1    | 3                                                                                        | -   | -   | -   | -   | 3   | -   | -   | -   | -    | -    | 1    | 1    | -    |
| CO2    | 3                                                                                        | -   | 1   | 2   | -   | 2   | -   | -   | -   | -    | -    | 1    | 1    | -    |
| CO3    | 3                                                                                        | 3   | 3   | 3   | -   | 1   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO4    | 3                                                                                        | 3   | 3   | 3   | -   | 1   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO5    | 3                                                                                        | 3   | 1   | 2   | 3   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |
| CO6    | 3                                                                                        | 3   | 1   | 2   | 3   | -   | -   | -   | -   | -    | -    | 1    | 2    | -    |

|                                                                                                                                 | Course Contents                                                                                                         |        |          |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|----------|--|--|--|--|--|
| Unit No.                                                                                                                        | Course Contents                                                                                                         | Hrs    | CO's     |  |  |  |  |  |
| Unit 1                                                                                                                          | Introduction to Electric Vehicle, Vehicle Dynamics: Modelling and Simulation                                            | 6      | CO1      |  |  |  |  |  |
| Unit 2                                                                                                                          | Fundamental of Drives and Power Electronics for DC Drives                                                               | 6      | CO2      |  |  |  |  |  |
| Unit 3                                                                                                                          | Modeling and Control of DC Motor Drives                                                                                 | 6      | CO3      |  |  |  |  |  |
| Unit 4                                                                                                                          | Basics of Induction Motor and V/f Control, Realization of Power Electronic Converters and PWM for IM drives             | 6      | CO4      |  |  |  |  |  |
| Unit 5                                                                                                                          | Modelling of PMSM Drives                                                                                                | 6      | CO5      |  |  |  |  |  |
| Unit 6                                                                                                                          | Vector Control of PMSM Drives                                                                                           | 6      | CO6      |  |  |  |  |  |
| Text Books:         [T1] Iqbal Husain, ELECTRIC and HYBRID VEHICLES, Design Fundamentals, CRC Press,2003, ISBN : 978-1439811757 |                                                                                                                         |        |          |  |  |  |  |  |
|                                                                                                                                 | s:<br>Isani, Y. Gao, S. Gay and A. Emadi,Modern Electric, Hybrid Electric, and Fuel<br>Is, 2005, ISBN-13 978-0849331541 | CellVe | chicles, |  |  |  |  |  |

### **E-References**

[E1]https://onlinecourses.nptel.ac.in/noc24\_ee30/course?user\_email=rrbibave@gmail.com

|                                                                                                                                                                                                                                                                                                                                                                                                               | EE413B-FACTS Device                                                               |                           |                  |            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|------------------|------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                               | ng Scheme                                                                         | <b>Examination Scheme</b> |                  |            |  |  |  |  |  |  |
| Lecture                                                                                                                                                                                                                                                                                                                                                                                                       | es: NA                                                                            | NPTEL Assignment:         |                  | 25 Marks   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | NPTEL Exam:               |                  | 75 Marks   |  |  |  |  |  |  |
| Credits                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   | Total:                    |                  | 100 Marks  |  |  |  |  |  |  |
| 1.<br>2.                                                                                                                                                                                                                                                                                                                                                                                                      | Juisite Course:         Power System         Power Electronics         Objectives |                           |                  |            |  |  |  |  |  |  |
| <ol> <li>Understand the concepts of Flexible Power Transmission</li> <li>Understand Ideal shunt and practical shunt compensation using Thyristors (TCR) and Bridge<br/>Converters (STATCOM)</li> <li>Understand the concepts of ideal series, practical series using Thyristors (TCSC) and Converters<br/>(SSSC)</li> <li>Understand the concepts of UPQC and IPFC</li> <li>Course Outcomes (COs):</li> </ol> |                                                                                   |                           |                  |            |  |  |  |  |  |  |
| After su                                                                                                                                                                                                                                                                                                                                                                                                      | accessful completion of the course, stud                                          | lent will be able to      |                  |            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | Course Outcome (s)                                                                |                           | Bloom's Taxonomy |            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                           | Level            | Descriptor |  |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                           | Classify the different types of FACT                                              | S controllers             | 2                | Understand |  |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                           | Design and analyze of multilevel invo<br>PWM techniques                           | erters with suitable      | 3                | Apply      |  |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                           | Analyze the dynamics of stability of using SVC and STATCOM with the v reactance.  |                           | 4                | Analyze    |  |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                           | Analyze the functional operation and TSSC and TCSC.                               | control of GCSC,          | 4                | Analyze    |  |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                           | Analyze system behaviour with hybri compensators.                                 | d shunt-series            | 4                | Analyze    |  |  |  |  |  |  |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                           | Identify the FACTS devices for different system control                           | rent application on       | 3                | Apply      |  |  |  |  |  |  |

| Mappi | ng of C | Course | Outcor | nes to P | rogran | 1 Outco | omes (l | POs) & | Progr | am Spec | ific Out | comes (I | PSOs): |      |
|-------|---------|--------|--------|----------|--------|---------|---------|--------|-------|---------|----------|----------|--------|------|
|       | PO1     | PO2    | PO3    | PO4      | PO5    | PO6     | PO7     | PO8    | PO9   | PO10    | PO11     | PO12     | PSO1   | PSO2 |
| CO1   | 3       | 2      | -      | -        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | -    |
| CO2   | 3       | 2      | 2      | -        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | -    |
| CO3   | 3       | 2      | 2      | 1        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | 1    |
| CO4   | 3       | 2      | 2      | 1        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | 1    |
| CO5   | 3       | 2      | 2      | 1        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | -    |
| CO6   | 3       | 2      | 2      | 1        | -      | -       | -       | -      | -     | -       | -        | 1        | 2      | -    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | FACTS: Concept & Power Electronic Controllers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. | COs |
|          | History or Origin of FACTS, Background and Issues, System Architectures<br>and Limitations, Benefits of FACTS, FACTS Applications and<br>Implementations, Classifications of FACTS Controllers and their single line<br>diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | CO1 |
| UNIT-II  | Power Electronic Controllers and PWM techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs. | СО  |
|          | Introduction to MLI, Classification of MLI-Flying Capacitor or Capacitor<br>Clamped MLI and Cascaded H-Bridge MLI.<br>PWM Techniques and its classification- Carrier-based PWM Techniques -<br>Phase-shifted PWM(PS-PWM), Level-shifted PWM(LS-PWM), Hybrid PS-<br>LS PWM, Third Harmonic Injection PWM, Hybrid PWM for Asymmetric<br>CHB MLI), Space Vector Modulation for NPC schemes<br>Closed Loop Control- Voltage mode control, Current mode control,<br>Instantaneous Current Control and Hysteresis-Band Current Control.                                                                                                                                                                                | 3    | CO2 |
| UNIT-III | Static Shunt Compensators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hrs. | CO  |
|          | Shunt Compensator- Thyristor Control Reactor (TCR), Thyristor Switched<br>Capacitor (TSC), Static Var compensator (SVC), Fixed Capacitor-<br>Thyristor Controlled Reactor (FC-TCR) and STATCOM.<br>General control scheme of SVC, The Regulation Slope, Dynamic<br>Performance, Transient Stability Enhancement, Power Oscillation<br>Damping and Var Reserve (operating point) Control, Design of<br>DSTATCOMs.                                                                                                                                                                                                                                                                                                 | 4    | CO3 |
| UNIT-IV  | Static Series Compensators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. | CO  |
|          | <ul> <li>Series Capacitive Compensation, Converter Type Series Compensators,<br/>Analysis of series compensator, Voltage Stability and Transient Stability<br/>Improvement using series compensator and effects on Power Oscillation<br/>Damping.</li> <li>Type Series Compensators - GTO Thyristor-controlled Series Capacitor<br/>(GCSC), Thyristor-Switched Series Capacitor (TSSC) and Thyristor-<br/>Controlled Series Capacitor (TCSC).</li> <li>Principle of Operation SSSC, Control Range and VA Rating of SSSC, Hybrid<br/>SSSC, Real power Compensation and Internal Control of SSSC</li> <li>TCSC Operation, its V-I Characteristics, Internal Control scheme for GCSC,<br/>TCSC and TSSC.</li> </ul> | 4    | CO4 |
| UNIT-V   | Unified Power quality Conditioner (UPQC) and Unified Power Flow<br>Controller (UPFC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs. | СО  |
|          | Introduction of UPQC, Classification of UPQC- Supply System-Based<br>Classification of UPQCs and Rating-Based Classification of UPQCs,<br>Principle Operation of UPQC, Control of UPQC and Rating and Control of<br>UPQC, Synchronous Reference Frame (SRF) Theory for UPQC.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3    | CO5 |

|                                                                                       | Introduction of UPFC, Transmission Control Capabilities, Power Flow             |         |      |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|------|--|--|--|--|
|                                                                                       | Control Capability of UPFC, Real and Reactive Power Flow Control, Control       |         |      |  |  |  |  |
|                                                                                       | Structure, Functional Control of the Shunt and series Converter and Basic       |         |      |  |  |  |  |
|                                                                                       | Control System for P and Q Control.                                             |         |      |  |  |  |  |
| UNIT-VI                                                                               | Interline Power Flow Controller (IPFC) and application of FACTS                 | Hrs.    | CO   |  |  |  |  |
|                                                                                       | device                                                                          |         |      |  |  |  |  |
|                                                                                       | Introduction of Interline Power Flow controller (IPFC Operating Principles      | 3       | CO6  |  |  |  |  |
|                                                                                       | and Control Structure.                                                          | 3       | 000  |  |  |  |  |
| <b>Text Books</b>                                                                     |                                                                                 |         |      |  |  |  |  |
| [T1] Narain G.Hingorani, Laszio. Gyugyl, "Understanding FACTS Concepts and Technology |                                                                                 |         |      |  |  |  |  |
| of Flexible A                                                                         | AC Transmission System", Print 2000, Standard Publishers, Delhi 2001, ISBN-     | 978-    |      |  |  |  |  |
| 0780334557                                                                            | 7.                                                                              |         |      |  |  |  |  |
| [T2] A.T.Jo]                                                                          | hn, "Flexible AC Transmission System", Institution of Electrical and Electronic | : Engin | eers |  |  |  |  |
| (IEEE), 199                                                                           | 9, ISBN-978-0852967713.                                                         |         |      |  |  |  |  |
| References                                                                            | :                                                                               |         |      |  |  |  |  |
| [R1] Moha                                                                             | n Mathur, R., Rajiv. K. Varma, "Thyristor – Based Facts Controllers for Electri | cal     |      |  |  |  |  |
| Transmissic                                                                           | on Systems", 1st Edition, IEEE press and John Wiley & Sons, Inc, ISBN- 978-04   | 471206  | 439. |  |  |  |  |
| [R2] K.R.Pa                                                                           | adiyar," FACTS Controllers in Power Transmission and Distribution", New Age     | e       |      |  |  |  |  |
|                                                                                       | l(P) Ltd., Publishers New Delhi, Reprint 2009, ISBN-978-1848290105              |         |      |  |  |  |  |
| <b>E-Referenc</b>                                                                     |                                                                                 |         |      |  |  |  |  |
| [E1]. <u>https:/</u>                                                                  | /nptel.ac.in/courses/108107114 (FACTS Devices)                                  |         |      |  |  |  |  |
|                                                                                       |                                                                                 |         |      |  |  |  |  |
|                                                                                       |                                                                                 |         |      |  |  |  |  |

2023-2024

# EE413C-Power Quality Improvement Technique

| Teachi                             | ng Scheme Examin                                                                                                                                                                                                                                      | nation Scheme     |                 |            |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|------------|--|--|
| Lectur                             | res: NA NPTEI                                                                                                                                                                                                                                         | Assignment:       |                 | 25 Marks   |  |  |
|                                    | NPTEI                                                                                                                                                                                                                                                 | <b>Exam:</b>      |                 | 75 Marks   |  |  |
| Credit                             | s: 2 Total:                                                                                                                                                                                                                                           |                   |                 | 100 Marks  |  |  |
|                                    | <b>quisite Course:</b><br>Fundamentals of Power Systems and Power Electror                                                                                                                                                                            | nics              |                 |            |  |  |
| Course                             | e Objectives                                                                                                                                                                                                                                          |                   |                 |            |  |  |
| 2. Ma<br>3. Ma<br>4. Lea<br>Course | evelop understanding of power quality attributes.<br>The students describe problems associated with poor pake students describe mitigation techniques for impro-<br>arn various equipment of monitoring and assessment.<br>The <b>Outcomes (COs):</b> | ving power qualit | ty.             |            |  |  |
| After s                            | uccessful completion of the course, student will be ab                                                                                                                                                                                                |                   |                 |            |  |  |
|                                    | Course Outcome (s)                                                                                                                                                                                                                                    |                   | Bloom's Taxonom |            |  |  |
|                                    |                                                                                                                                                                                                                                                       | ]                 | Level           | Descriptor |  |  |
| CO1                                | Understand power quality and attribute of power q                                                                                                                                                                                                     | uality            | 2               | Understand |  |  |
| CO2                                | Describe voltage flicker and mitigation of it                                                                                                                                                                                                         |                   | 3               | Apply      |  |  |
| CO3                                | Analyze the effect of power system events on volta characteristics                                                                                                                                                                                    | ige sag and its   | 3               | Apply      |  |  |
| <b>CO4</b>                         | Identify the sources of harmonics and harmonics p                                                                                                                                                                                                     | roduced           | 4               | Analyze    |  |  |
| CO5                                | D5Select proper method for harmonic mitigation along with<br>methods of power quality monitoring.3Apply                                                                                                                                               |                   |                 |            |  |  |
| CO6                                | Carry out power quality monitoring using power q analyzer                                                                                                                                                                                             | uality            | 4               | Analyze    |  |  |

| Mappir | ng of C | ourse ( | Dutcom | nes to Pr | rogram | Outco | mes (P | Os) & | Progra | m Speci | fic Outc | omes (P | SOs): |      |
|--------|---------|---------|--------|-----------|--------|-------|--------|-------|--------|---------|----------|---------|-------|------|
|        | PO1     | PO2     | PO3    | PO4       | PO5    | PO6   | PO7    | PO8   | PO9    | PO10    | PO11     | PO12    | PSO1  | PSO2 |
| CO1    | 2       | 3       | 1      | 1         | 1      | -     | -      | -     | -      | -       | -        | 1       | 1     | 1    |
| CO2    | 2       | 3       | 2      | 2         | -      | -     | -      | -     | -      | -       | -        | 1       | 2     | 2    |
| CO3    | 2       | 3       | 1      | 2         | 1      | -     | -      | -     | -      | -       | -        | 1       | -     | -    |
| CO4    | 2       | 3       | 2      | 2         | -      | -     | -      | I     | -      | -       | -        | 1       | 1     | 2    |
| CO5    | 2       | 2       | 1      | 1         | -      | -     | -      | -     | -      | -       | -        | -       | 1     | -    |
| CO6    | 2       | 3       | 2      | 2         | -      | -     | -      | -     | -      | -       | -        | 1       | -     | 1    |

|          | Course Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| UNIT-I   | Basics of Power Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | COs |
|          | Concept of Power Quality: Frequency variations, voltage variations- sag and<br>swell, waveform distortion –dc offset, harmonics, inter-harmonics, notching<br>and noise. Representation of harmonics, waveform, harmonic power,<br>measures of harmonic distortion; Current and voltage limits of harmonic<br>distortions: IEEE, IEC, EN, NORSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8    | CO1 |
| UNIT-II  | RMS Voltage variations, Flickers and Transient Over-Voltages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hrs. | CO  |
|          | RMS voltage variations in power system and voltage regulation per unit<br>system, complex power. Principles of voltage regulation. Basic power flow<br>and voltage drop. Various devices used for voltage regulation and impact of<br>reactive power management. Various causes of voltage flicker and their<br>effects. Short term and long term flickers. Ferro-resonance Various means to<br>reduce flickers. Flicker meter and monitoring. Transient over voltages,<br>sources, impulsive transients, switching transients, Effect of surge<br>impedance and line termination, control of transient voltages.<br>PWM Inverter: Voltage sourced active filter, current sourced active filter,<br>constant frequency control, constant tolerance band control, variable<br>tolerance band control.<br>Unified power quality conditioner, voltage source and current source<br>configurations, principle of operation for sag, swell and flicker control | 8    | CO2 |
| UNIT-III | Voltage Sag, Swell and Interruption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. | CO  |
|          | Definitions of voltage sag and interruptions. Voltage sags versus interruptions. Economic impact of voltage sag, Major causes and consequences of voltage sags. Voltage sag characteristics. Voltage sag assessment. Influence of type of fault, fault location and fault level on voltage sag. Phase angle jumps. Types of sags (Type 1 to type 7). Areas of vulnerability. Assessment of equipment sensitivity to voltage sags. Voltage sag limits for computer equipment, CBEMA, ITIC, SEMI F 42 curves. Measurement of voltage sag half cycle RMS, one cycle rms methods. Representation of the results of voltage sags analysis. Voltage sag indices. Mitigation measures for voltage sags, such as UPS, DVR, SMEs, CVT etc., utility solutions and end user solutions.                                                                                                                                                                              | 8    | CO3 |
| UNIT-IV  | Harmonics & Its mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs. | CO  |
|          | Causes of Harmonics: 2-pulse, 6-pulse and 12-pulse converter configurations, input current waveforms and their harmonic spectrum; Input supply harmonics of AC regulator, integral cycle control, cycloconverter, transformer, rotating machines, ARC furnace, TV and battery charger. Elimination/ Suppression of Harmonics: High power factor converter, multipulse converters using transformer connections (delta, polygon).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7    | CO4 |
| UNIT-V   | Power filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs. | CO  |
|          | Active Power Filters: Compensation principle, classification of active filters<br>by objective, system configuration, power circuit and control strategy.<br>Passive Filters: Types of passive filters, single tuned and high pass filters,<br>filter design criteria, double tuned filters, damped filters and their design.<br>Hybrid Shunt Active power filter: Principle of operation, analysis and<br>modelling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7    | CO5 |
| UNIT-VI  | Power Quality Monitoring & Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hrs. | CO  |
|          | Need of power quality monitoring and approaches followed in power<br>quality monitoring. Power quality monitoring objectives and requirements.<br>Initial site survey. Power quality instrumentation. Power quality analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    | CO6 |

specification requirement as per EN50160 Standard. Selection of power quality equipment for cost effective power quality monitoring, Selection of power quality monitors, selection of monitoring location and period. Selection of transducers. Harmonic monitoring, Transient monitoring, event recording and flicker monitoring. Power Quality assessment, Power quality indices and standards for assessment disturbances, waveform distortion.

#### **Text Books:**

[T1] R. C. Dugan, Mark F. McGranaghan, Surya Santoso, and H. Wayne Beaty, "Electrical Power System Quality", 2nd Edition, McGraw-Hill Publication. ISBN-10: *968-0079156787* 

[T2] M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", New York: IEEE Press, 2000, Series on Power Engineering.ISBN-10: 9788131503638

#### **References:**

[R1] Enriques Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis," John Wiley and Sons Ltd. *ISBN*-10: 9332549443.

[R2] Ewald F. Fuchs, Mohammad A. S. Masoum, "Power Quality in Power Systems and Electrical Machines," Elsevier Publication.ISBN-10:9780070141536

[R3] Arrillaga, M. R. Watson, "Power System Harmonics", John Wiley and Sons. *ISBN-10. 8178002094*; ISBN-13. 936-81780025362

[R4] G. J. Heydt, "Electric Power Quality", Stars in Circle Publications. *ISBN-10.* 935632543550 [R5] EN50160 and IEEE 1100, 1346, 519, and 1159 standards.

#### **E-References**

[E1] https://onlinecourses.nptel.ac.in/noc24\_ee34/course (Power Quality Improvement Technique)

# **EE413D-Data Science for Engineers**

|                            | ng Scheme                                                                                                                                                                                                                            | <b>Examination Scheme</b> |           |              |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|--|--|
| Lectur                     | es: NA                                                                                                                                                                                                                               | NPTEL Assignment:         |           | 25 Marks     |  |  |
|                            |                                                                                                                                                                                                                                      | NPTEL Exam:               |           | 75 Marks     |  |  |
| Credits                    | :2                                                                                                                                                                                                                                   | Total:                    |           | 100 Marks    |  |  |
| Prerec                     | uisite Course:                                                                                                                                                                                                                       |                           |           |              |  |  |
| Mather                     | natics, Python Programming                                                                                                                                                                                                           |                           |           |              |  |  |
| Course                     | Objectives                                                                                                                                                                                                                           |                           |           |              |  |  |
| 2. Uno<br>3. Uno<br>4. Uno | lerstand R as a programming language<br>lerstand the mathematical foundations requir<br>lerstand the first level data science algorithm<br>lerstand a data analytics problem solving fra<br>lerstand a practical capstone case study | ns                        |           |              |  |  |
|                            | Outcomes (COs):                                                                                                                                                                                                                      |                           |           |              |  |  |
| After su                   | ccessful completion of the course, student v                                                                                                                                                                                         | vill be able to           |           |              |  |  |
|                            | Course Outcome (s)                                                                                                                                                                                                                   |                           | Bloor     | n's Taxonomy |  |  |
|                            |                                                                                                                                                                                                                                      |                           | Level     | Descriptor   |  |  |
| CO1                        | Describe a flow process for data science pa                                                                                                                                                                                          | roblems                   | 1         | Remember     |  |  |
| CO2                        | Classify data science problems into standa                                                                                                                                                                                           | rd typology               | 2         | Understand   |  |  |
| CO3                        | Apply and Develop R codes for data scien                                                                                                                                                                                             | ce solutions              | 3         | Apply        |  |  |
| <b>CO4</b>                 | Analyze and Correlate results to the solution unconstrained Multivariate Optimization (                                                                                                                                              |                           | 4 Analyze |              |  |  |
| CO5                        | Evaluate the solution approach of data scie                                                                                                                                                                                          | ence                      | 5         | Evaluate     |  |  |
| CO6                        | Create use cases to validate approach and required for logistics regression                                                                                                                                                          | identify modifications    | 6         | Create       |  |  |

| Mappi | ng of C | Course | Outcor | nes to P | rogram | Outeo | mes (F | Os) & | Progra | m Spec | ific Outo | comes (F | PSOs): |      |
|-------|---------|--------|--------|----------|--------|-------|--------|-------|--------|--------|-----------|----------|--------|------|
|       | PO1     | PO2    | PO3    | PO4      | PO5    | PO6   | PO7    | PO8   | PO9    | PO10   | PO11      | PO12     | PSO1   | PSO2 |
| CO1   | 3       | 2      | -      | -        | -      | -     | -      | -     | -      | -      | -         | 1        | 2      | -    |
| CO2   | 3       | 2      | -      | -        | -      | -     | -      | -     | -      | -      | -         | 1        | 2      | -    |
| CO3   | 3       | 2      | 2      | 1        | -      | -     | -      | -     | -      | -      | -         | 1        | 2      | 1    |
| CO4   | 3       | 2      | 2      | 1        | -      | -     | -      | -     | -      | -      | -         | 1        | 2      | 1    |
| CO5   | 3       | 2      | 2      | 1        | -      | -     | -      | 1     | I      | I      | I         | 1        | 2      | -    |
| CO6   | 3       | 2      | 2      | 1        | -      | -     | -      | -     | -      | -      | -         | 1        | 2      | -    |

|                           | Course Contents                                                                                                                                                                                                                                                                                                                                                                       |      |          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| UNIT-I                    | Introduction to R as programming language                                                                                                                                                                                                                                                                                                                                             | Hrs. | COs      |
|                           | History or Origin of data science, Introduction to Variables and datatype in<br>Data frames, recasting and joining of data frames, arithmetic, logic and<br>matrix operation in R,Advanced programming in C(functions),control<br>structures and data visualization in R basic graphics.                                                                                              | 10   | CO1      |
| UNIT-II                   | Linear algebra for data science                                                                                                                                                                                                                                                                                                                                                       | Hrs. | CO       |
|                           | Introduction to Linear algebra for data science, solving the linear equation,<br>Algebraic view - vectors, matrices, product of matrix & vector, rank, null<br>space, solution of over-determined set of equations and pseudo-inverse<br>Geometric view - vectors, distance, projections, eigenvalue decomposition                                                                    | 7    | CO2      |
| UNIT-III                  | Data science statistics                                                                                                                                                                                                                                                                                                                                                               | Hrs. | CO       |
|                           | Introduction to Statistical modelling, Random variables and probability mass/density functions, sample statistics which include descriptive statistics, notion of probability, distributions, mean, variance, covariance, covariance matrix, understanding univariate and multivariate normal distributions, introduction to hypothesis testing, confidence interval for estimates.   | 4    | CO3      |
| UNIT-IV                   | Optimization of data science                                                                                                                                                                                                                                                                                                                                                          | Hrs. | CO       |
|                           | Introduction to Optimization of data science, Unconstrained Multivariate<br>Optimization Gradient (Steepest) Descent(OR) Learning Rule, Multivariate<br>Optimization With Equality Constraints, Multivariate Optimization With<br>Inequality Constraints.                                                                                                                             | 4    | CO4      |
| UNIT-V                    | Data science problems and solution framework                                                                                                                                                                                                                                                                                                                                          | Hrs. | CO       |
|                           | Solving Data Analysis Problems - A Guided Thought Process, Module :<br>Predictive Modelling, Linear Regression, Model Assessment, Diagnostics to<br>Improve Linear Model Fit, Simple Linear Regression Model Building,<br>Simple Linear Regression Model Assessment, Multiple Linear Regression,<br>Cross Validation, Multiple Linear Regression Modelling Building and<br>Selection. | 10   | CO5      |
| UNIT-VI                   | Classification Of Logistics regression                                                                                                                                                                                                                                                                                                                                                | Hrs. | CO       |
|                           | Classification of Logistic Regression, Performance Measures, Logistic<br>Regression Implementation in R, K - Nearest Neighbors (kNN),K - Nearest<br>Neighbors implementation in R,K - means Clustering - means<br>implementation in R,Data Science for engineers - Summary                                                                                                            | 10   | CO6      |
| <b>Text Books</b>         |                                                                                                                                                                                                                                                                                                                                                                                       |      |          |
| [T1] Chanta<br>ISBN:978-1 | al D. Larose & Daniel T. Larose, "Data Science Using Python and R", pr<br>-119-52681-0<br>athan Rengaswamy, 'Data science for Engineer', CRC press, ISBN 97803677                                                                                                                                                                                                                     |      | y wiley, |

## **References:**

[R1] Gilbert Stran," Introduction To Linear Algebra", Wellesley-Cambridge Press, Isbn-13 978-1733146630

[R2] Douglas Montgomery & George .C.Runner" Applied Statistics And Probability For Engineers, Fifth Edition Isbn–13 978-0-470-05304-1 Printed In The United States Of America, John Wiley And Sons.

### **E-References**

[E1] <u>https://nptel.ac.in/courses/106106179</u> (Data Science for Engineers)

| EE414 : Professional Internship |                           |           |  |  |  |  |  |  |  |
|---------------------------------|---------------------------|-----------|--|--|--|--|--|--|--|
| Teaching Scheme                 | <b>Examination Scheme</b> |           |  |  |  |  |  |  |  |
| Lectures: NA                    | Oral Exam:                | 50 Marks  |  |  |  |  |  |  |  |
|                                 | Term Work:                | 100 Marks |  |  |  |  |  |  |  |
| Credits: 6                      | Total :                   | 150 Marks |  |  |  |  |  |  |  |

#### **Course Objectives**

- 1. To get an opportunity to observe current technological developments relevant to the program.
- 2. To get the opportunity to learn, understand and sharpen the real time technical skills.
- 3. To get exposure to the industrial environment.

| Cour  | Course Outcomes (COs):                                                            |   |            |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|---|------------|--|--|--|--|--|
| After | After successful completion of the course, student will be able to                |   |            |  |  |  |  |  |
|       | Course <b>Outcome (s)</b> Bloom's Taxonomy                                        |   |            |  |  |  |  |  |
|       | Lev                                                                               |   |            |  |  |  |  |  |
| CO1   | <b>Understand</b> the current technological developments relevant to the program. | 2 | Understand |  |  |  |  |  |
| CO2   | Apply technical skills to propose solutions to real-time problems.                | 3 | Apply      |  |  |  |  |  |
| CO3   | Acquire professional competency in Electrical Engineering.                        | 3 | Apply      |  |  |  |  |  |

| Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs): |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                      | 3   | 2   | -   | 3   | 2   | 1   | 2   | -   | 1   | 2    | 3    | 3    | 3    | 3    |
| CO2                                                                                      | 3   | 3   | 3   | 3   | 3   | 3   | 2   | -   | 3   | 2    | 3    | 3    | 3    | 3    |
| CO3                                                                                      | 3   | 3   | 3   | 3   | 3   | 2   | 2   | -   | 3   | 2    | 3    | 3    | 3    | 3    |

#### **Course Contents**

#### **Guidelines for Internship**

Minimum of Eight weeks to 6 months in an Industry in the area of Electrical Engineering. The Professional internship should give exposure to the practical aspects of the discipline. In addition, the student may also work on a specified task or project, which may be assigned to him/her. The outcome of the internship should be presented in the form of a report.

There are four different options available for the students to earn internship credit.

- 1. **SAP:** Students shall register for SAP certification course under the **SAP** Academy Centre of the Department. After registration, Students shall attend the 200 hours training under the module provided by **SAP** Academy. Students shall attend the internship provided under the specific module. Credits shall be awarded to the students on successful completion of Global Certification examination conducted by **SAP India**.
- 2. Data Science: Any industry related Project or Task allotted by Renowned Organisation.

**3. Industrial Internship:** Credits shall be awarded to the students on successful completion of Industrial Internship for 2-6 month.

**Guidelines:** 

Two guides shall supervise the internship project work, one from the department and another one from industry.

Industry shall submit the month-wise satisfactory attendance of the students to the institute/department

Students must regularly use a daily diary, which is to cultivate the habit of documenting.

The presentation is a way to evaluate student performance, so students must be ready as institute guides, and internal and external examiners evaluate them.

Students must submit a comprehensive report to the department before presentation.

Steps to apply for internship

Students shall ask for permission letters from Department office/office of Training & Placement cell of the college in consultation of guide (Institute) to allot Minimum 8 to 12 weeks during internship periods.

Students on joining Training at the concerned Industry must submit the permission letter from the office of Training & Placement cell of the college.

Students must regularly use a diary to record the details and submit attendance in the internship report.

Students shall obtain a Training Certificate from industry.

Students shall submit a training report after completion of internship to guide.

Evaluation process for internship

2023-2024

Students must submit training reports and training certificates from industry after completion of internship to guide.

Guide will assess performance of student through presentation, which is evaluated by institute guide and external examiner from institute itself.

2020 Pattern

| Teaching Scheme Examination Sch                                                       |                                                                      |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        |                  |            | ieme          |          |          |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|--------------------------|------------------|---------|------------------------------------------------------------------------------------------------------------------------|----------|--------|------------------|------------|---------------|----------|----------|--|--|
|                                                                                       |                                                                      | Hrs./                                                                    | Week               |                          |                  |         |                                                                                                                        |          | Or     | al:              |            | 50 Mai        |          |          |  |  |
| Credi                                                                                 | ts: 02 (                                                             | Credit                                                                   | 5                  |                          |                  |         |                                                                                                                        |          | Tot    | tal:             |            |               | 50       | Marks    |  |  |
|                                                                                       | -                                                                    | e Coui                                                                   |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      | Project                                                                  | t, Semi            | inar                     |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
| Cours                                                                                 |                                                                      |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        | -                | od proj    | ect and a     | ble to w | ork in   |  |  |
|                                                                                       | a team leading to development of hardware/software product.          |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      | -                                                                        | -                  | technica                 | -                |         |                                                                                                                        | 1.1      | •      |                  | •          |               |          |          |  |  |
|                                                                                       | 3. Ga                                                                | in Mot                                                                   | tivatio            | n to pres                | sent the         | e ideas | behind                                                                                                                 | d the p  | roject | with cla         | rıty.      |               |          |          |  |  |
| Cours                                                                                 | e Outo                                                               | comes                                                                    | (COs)              | :                        |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      |                                                                          |                    |                          | e cours          | e. stud | lent wi                                                                                                                | ll be al | ole to |                  |            |               |          |          |  |  |
| After successful completion of the course, student will be able to Course Outcome (s) |                                                                      |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        | Bloom's Taxonomy |            |               |          |          |  |  |
|                                                                                       |                                                                      |                                                                          |                    |                          |                  |         |                                                                                                                        |          | -      | Level            | Descriptor |               |          |          |  |  |
| CO1                                                                                   | Ide                                                                  | Identify, formulate, design, interpret, analyze and provide solutions to |                    |                          |                  |         |                                                                                                                        |          |        | 3                |            | oply          |          |          |  |  |
|                                                                                       |                                                                      | complex engineering and societal issues by applying knowledge            |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          | 1.       |  |  |
|                                                                                       |                                                                      | gained on basics of science and Engineering                              |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       | Ch                                                                   | Choose, conduct and demonstrate a sound technical knowledge of their     |                    |                          |                  |         |                                                                                                                        |          |        |                  |            | 5             | Evaluate |          |  |  |
|                                                                                       | sele                                                                 | selected project topics in the field of power components, protection,    |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
| CO2                                                                                   | high voltage, electronics, process automation, power electronics and |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       | drives, instrumentation and control, allied engineering by exploring |                                                                          |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      | suitable engineering and IT tools.                                       |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
|                                                                                       |                                                                      | Formulate and propose new learning algorithms to solve engineering       |                    |                          |                  |         |                                                                                                                        |          |        |                  |            | 6             | Create   |          |  |  |
| CO3                                                                                   |                                                                      | and societal problems of moderate complexity through                     |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
| CO3                                                                                   |                                                                      | multidisciplinary projects understanding commitment towards              |                    |                          |                  |         |                                                                                                                        |          |        |                  |            |               |          |          |  |  |
| CO3                                                                                   |                                                                      |                                                                          |                    | sustainable development. |                  |         |                                                                                                                        |          |        |                  |            |               |          | <b>.</b> |  |  |
| CO3                                                                                   | sus                                                                  | tainabl                                                                  |                    | -                        |                  |         | Demonstrate, prepare reports, communicate and work in a team as member/leader by adhering to ethical responsibilities. |          |        |                  |            |               |          |          |  |  |
|                                                                                       | sus<br>De                                                            | tainabl<br>monstr                                                        | ate, pr            | epare re                 | ports,           |         |                                                                                                                        |          |        | n a tean         | n as a     | 2             | Unde     | rstand   |  |  |
|                                                                                       | sus<br>De                                                            | tainabl<br>monstr                                                        | ate, pr            | epare re                 | ports,           |         |                                                                                                                        |          |        | n a tean         | n as a     | 2             | Unde     | rstand   |  |  |
| CO3<br>CO4                                                                            | sus<br>De                                                            | tainabl<br>monstr                                                        | ate, pr            | epare re                 | ports,           |         |                                                                                                                        |          |        | n a tean         | n as a     | 2             | Unde     | rstand   |  |  |
| CO4                                                                                   | sus<br>Der<br>me                                                     | tainabl<br>monstr<br>mber/le                                             | ate, pr<br>eader b | epare re<br>by adher     | ports,<br>ing to | ethical | l respo                                                                                                                | nsibilit | ies.   |                  |            | 2<br>fic Outc |          |          |  |  |
| CO4                                                                                   | sus<br>Der<br>me                                                     | tainabl<br>monstr<br>mber/le                                             | ate, pr<br>eader b | epare re<br>by adher     | ports,<br>ing to | ethical | l respo                                                                                                                | nsibilit | ies.   |                  |            |               |          |          |  |  |

|     | 101 | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | TOIL | 1012 | 1501 | 1502 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | 3    |
| CO2 | -   | -   | -   | -   | 3   | 3   | -   | -   | -   | -    | -    | -    | 3    | 3    |
| CO3 | -   | -   | -   | -   | -   | -   | 3   | -   | 3   | -    | -    | -    | 3    | 3    |
| CO4 | -   | -   | -   | -   | -   | -   | -   | 3   | 3   | 3    | 3    | 3    | 3    | 3    |

#### **Project Stage II**

The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be the design /fabrication of any power component / circuit / sensor / Activator / Controller, a research investigation, a computer or management project or a design problem.

The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

#### **Guidelines to students:**

1. Continue with the same group and identify opportunities for self-learning and upgrading skills.

2. Actively participate in all the activities related to the project.

3. Document the project in the form of a hard-bound report at the end and submit it to the department.

4. Attempt to make a prototype, working model, and demonstration of the project to display during the final presentation.

5. Participate in project competitions, paper presentations, etc.

6. Maintain an institutional culture of authentic collaboration, self-motivation, peer learning, and personal responsibility.

7. Maintain a notebook to keep records of all the meetings, discussions, notes, etc. This is to be done by the individual student and submitted at the end to the supervisor or guide.

8. Some parameters, will be evaluated and assessed at a group level and some at an individual level.

9. Format for project report is given in project stage I guidelines.