SANJIVANI RURAL EDUCATION SOCIETY'S

SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to SPPU Pune)

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE STRUCTURE AND SYLLABUS - 2020 PATTERN

SECOND YEAR B. TECH.

Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)

DECLARATION

We, the Board of Studies **INFORMATION TECHNOLOGY**, hereby declare that, We have designed the Curriculum of **S . Y . B Tech.** of Pattern **2020** w.e.f. A.Y **2021-2022** as per the guidelines . So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

BoS Chairman Head Department of Information Technology SRES College of Engineering Kopargaon MS-423603 Approved by

Dean Academics

PROFILE

Sanjivani College of Engineering (An Autonomous Institute), Kopargaon is one among the premier technical institutes in Maharashtra state in the un-aided sector established in 1983.Department of Information Technology is established in the year 2001 with an intake of 60 students. Department is acquainted with 8 well equipped laboratories with latest hardware and Software, 3 class rooms and one tutorial Hall equipped with modern teaching aids and computing facilities. UG Program in IT department is accredited by NBA New Delhi for Second time in Academic Year 2019-2020 for three Years.

There are 15 experienced & well qualified teaching staff members & 6 supporting staff members who carry out the regular academic activities as well as curricular & extracurricular activities as per the plans prepared in advance at the beginning of every semester.

In the academic year 2019-2020 strength of students in department is 275. Apart from regular academic activities students take part in curricular & co curricular activities conducted by department organization ITERA as well as other department's organization & professional bodies in the institute like CSI, ISTE, and IEEE etc. Apart from the central library the department has its own library with a very good collection of reference book, text books and CSI magazines, IEEE magazines.

Along with regular academics Department of IT has started value added courses like SAP Certification Training Programme in collaboration with Primus Techsystems Pvt. Ltd. Pune and REDHAT Academy Centre, MBPS Infotech Pune.

IT Department has started capsule courses to improve technical skill sets of students. Department is having very good placements in various renowned and multi-national companies like TCS, Infosys, Persistent, Cognizant Wipro and many more.

Also to form well balanced Industry Interaction connect and bridge the gap between Industry and institution Department of IT has organized different events like Sanjivani Though Leader, Sanjivani I-connect and Sanjivani My Story Board.

Various personal and professional skill development programs like Communication and Soft Skill programs, Aptitude Training, Technical Skill enhancement programs, Foreign Language Certification Courses, Personal and Spiritual Development Programs, Entrepreneurship Development Activities, and Preparation courses for competitive Examinations (Gate/GRE/CAT etc.) are made available in campus. Students are given opportunities to develop and nurture their leadership qualities through Student Associations, Student Council, Professional Body activities and working as volunteers in various events organized at Department/ College level.

VISION AND MISSION

Vision of Institute

To develop world class professionals through quality education.

Mission of Institute

To create Academic Excellence in the field of Engineering and Management through Education, Training and Research to improve quality of life of people.

Vision of Department

To develop world class IT professionals through quality education.

Mission of Department

To create Academic Excellence in the field of Information Technology through Education, Industry Interaction, Training and Innovation to improve quality of life of people.

We are committed to develop industry competent technocrats with life-long learning capabilities and moral values.

PROGRAM EDUCATIONAL OBJECTIVES

PEO 1:

Graduates of IT program should possess knowledge of fundamental concepts in mathematics, science, engineering and technology as well as skills in the field of Information Technology for providing solution to complex engineering problem of any domain by analyzing, designing and implementing.

PEO 2:

Graduates of IT program should possess better communication, presentation, time management and teamwork skills leading to responsible and competent research, entrepreneurship and professionals, will be able to address challenges in the field of Information Technology at global level.

PEO 3:

Graduates of IT program should have commitment to societal contributions through communities and life-long learning.

PROGRAM OUTCOMES

PO1:Engineering knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3:Design/development of solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4:Conduct investigations of complex problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6:The engineer and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7:Environment and sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9:Individual and team work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10:Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12:Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1:

Attain the ability to provide software solutions by applying knowledge of Data Structures & Algorithms, Databases, Web Technology, System Software, Soft Computing and Cloud Computing.

PSO2:

Apply the knowledge of Computer Hardware & Networking, Cyber Security, Artificial Intelligence and Internet of Things to effectively integrate IT based solutions.

PSO3:

Apply the knowledge of best practices and standards of Software Engineering for Project Management.

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE STRUCTURE AND SYLLABUS - 2020 PATTERN

	LIST OF	ABBREVIATI	ONS
Abbreviation	Full Form	Abbreviation	Full Form
ES	Engineering Science	HSMC	Humanity Science
PC	Professional Core	CA	Continuous Assessment
PE	Professional Elective	OR	End Semester Oral Examination
OE	Open Elective	PR	End Semester Practical Examination
ISE	In-Semester Evaluation	TW	Continuous Term work Evaluation
ESE	End-Semester Evaluation	BSC	Basic Science Course
PRJ	Project	MC	Mandatory Course

SECOND YEAR B. TECH.

SEMESTER - III

Course			Teaching				Evaluation Scheme - Marks							
Cat.	Code	Course Title	Scheme Hours/ Week			Credits		Theory		OR	PR	TW	Total	
			L	Τ	Р		ISE	ESE	CA					
РС	IT201	Discrete Mathematics	3	1	-	4	30	50	20	-	-	-	100	
РС	IT202	Digital Electronics & Computer Organization	4	-	-	4	30	50	20	-	-	-	100	
РС	IT203	Fundamentals of Data Structures33305020		-	-	-	100							
РС	IT204	Object Oriented Programming	3	-	-	3	30	50	20	-	-	-	100	
HS MC	HS205	Universal Human Values And Ethics	3	-	-	3	30	50	20	-	-	-	100	
РС	IT206	Digital Electronics Laboratory	-	-	2	1	-	-	-	-	-	50	50	
РС	IT207	Fundamental of Data Structure Laboratory	-	-	2	1	-	-	-	-	50	-	50	
РС	IT208	Object Oriented Programming Laboratory	-	-	2	1	-	-	-	50	-	-	50	
MC	MC209	Mandatory Course-III2-NON Credit-		-	-	-	-	-						
		Total	18	1	6	20	150	250	100	50	50	50	650	

MC209	Mandatory Course-III	Constitution of India – Basic features and fundamental principles
	internet of y course in	Constitution of finance Dusite features and fundamental principie

SEMESTER - IV

Course			Τ	eachi	ng		Evaluation Scheme – Marks							
Cat.	Code	Course Title	Scheme Hours/Week			Credits	ISE	Theory ESE	СА	OR	PR	TW	Total	
РС	IT210	Microprocessor & Microcontroller	4	-	-	4	30	50	20	-	-	-	100	
РС	IT211	Database Management System	3	-	-	3	30	50	20	-	-	-	100	
BS	BS202	Engineering Mathematics - III	4	-	-	4	30	50	20	-	-	-	100	
РС	IT213	Data Structures & Files	4	-	-	4	30	50	20	-	-	-	100	
РС	IT214	Database Management System Laboratory	-	-	2	1	-	-	-	-	-	50	50	
РС	IT215	Microprocessor & Microcontroller Laboratory	-	-	2	1	-	-	-	50	-	-	50	
PC	IT216	Data Structures & Files Laboratory	-	-	2	1	-	-	-	-	50	-	50	
PRJ	IT217	Seminar	2	-	-	2	-	-	-	50	-	-	50	
PRJ	IT218	Mini Project	-	-	4	2	-	-	-	-	-	50	50	
MC	MC219	Mandatory Course- IV	2	-	-	NON Credit	-	-	-	-	-	-	-	
		Total	19	-	10	22	120	200	80	100	50	100	650	

MC219	Mandatory Course-IV	Innovation - Project based – Sc., Tech, Social, Design & Innovation
-------	---------------------	---

Total Credits: 42

Total Marks: 1300

S.Y. B. Tech Information Technology Semester III

IT201: Discrete Mathematics

Teaching Scheme	Examination Scheme	
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks
Tutorial: 1 Hr/Week	In-Sem Exam:	30 Marks
	End-Sem Exam:	50 Marks
Credits: 4	Total:	100 Marks
Prerequisite Course: Basic Mathematics		

Course Objectives

- 1. To provide the knowledge of Set, proof techniques and determine logical possibilities.
- 2. To understand relation, functions among various entities in real world.
- 3. To introduce the basic of Group and Ring.
- 4. To learn to formulate problems mathematically using graph theory.
- 5. To understand the fundamental mathematics requirement used in cryptographic algorithms.
- 6. To comprehend the concept of decodability and prefix-free property.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's	a Taxonomy	
	Course Outcome (s)	Level	Descriptor	
CO1	Applythe basic terminology of set, proof techniques and determine	3	Apply	
001	logical possibilities in a given situation.		· · · PP··J	
CO2	Understand relations & functions and to determine their properties.	2	Understand	
CO3	Solve problems based on Group and Rings.	3	Apply	
CO4	Demonstrate the Information Theory.	3	Apply	
COS	Understand the fundamental mathematical requirement of	2	Understand	
COS	cryptographic algorithms.	2	Understand	
CO6	Understand the basics of Statistics and Probability	2	Understand	

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	1	1	1	2	1	1	1	2	-	-
CO2	3	3	1	1	1	1	1	1	2	1	1	2	-	-	-
CO3	3	3	2	2	1	1	1	1	2	1	1	2	-	-	-
CO4	3	3	2	2	1	2	1	1	2	1	1	2	-	-	-
CO5	3	3	2	2	2	1	1	2	2	1	2	2	-	2	-
CO6	3	3	2	1	1	2	1	1	2	1	2	2	-	-	2

	Course Contents		
Unit-I	COMBINATORICS	No. of Hours	COs
	Sets, Combinations of sets, Venn Diagrams, Finite and Infinite sets, Uncountable infinite sets, Principle of inclusion and exclusion, multisets. Propositions, Conditional Propositions, Logical Connectivity, Propositional calculus, Universal and Existential Quantifiers, Normal forms, methods of proofs, Mathematical Induction.	06	CO1
Unit-II	RELATIONS AND FUNCTIONS	No. of Hours	COs
	 Relations :Binary Relations, Closure of relations, Warshall's algorithm, Equivalence Relations and partitions, Partial ordering relations and lattices, Chains and Anti chains. Recurrence Relation, Linear Recurrence Relations With constant Coefficients, Generating functions. Regression Analysis: Linear, Logistic and Polynomial Regression Function Functions, Composition of functions, Invertible functions, Pigeonhole Principle, Discrete Numeric functions and Generating functions, Job scheduling Problem. 	06	CO2
Unit-III	GROUPS, SEQUENCES AND SUMMATIONS	No. of Hours	COs
	 Group Theory: Elementary properties, subgroups, cosets, normal groups, quotient groups, cyclic groups, homomorphism and isomorphism, Isomorphism theorem, permutation groups, Sylow's theorem and application, Application to Number theory: Lagrange's theorem, Euler's theorem, Fermat's theorem. Sequences and summations: Arithmetic progression, Geometric progression, Recursively defined sequences, Fibonacci sequence, Summations, Arithmetic series, Double summations, Geometric series and Infinite geometric series. 	06	CO3
Unit-IV	INFORMATION THEORY	No. of Hours	COs
	Information sources and entropy, Relative entropy, Joint and conditional entropy, mutual information, Lossless Source Coding with Variable Codeword Lengths, Best prefix-free codes, Huffman codes, Lossy Source Coding with Fixed Codeword Lengths, Channel Coding and Cyclic Codes.	06	CO4
Unit-V	INTEGER FOUNDATIONS	No. of Hours	COs
	Rings and fields: Rings, Ideals, maximal ideals, quotient rings, Integral domains, principal ideal domain(PID), Euclidean domain(ED), ring of integers as example of PID and ED, Euclidean algorithm for GCD, extended Euclidean algorithm, finding modular inverse of an integer, Chinese Remainder Theorem(CRT), Euler's φ-function, quadratic residues.	06	CO5
Unit-VI	INTRODUCTION TO STATISTICS AND PROBABILITY	No. of Hours	COs
	Statistics, notion of probability, distributions, mean, variance, covariance, covariance matrix, understanding univariate and multivariate normal distributions, introduction to hypothesis testing, confidence interval for	06	CO6

estimates, Simple linear regression and verifying assumptions used in linear regression, Multivariate linear regression, model assessment, assessing importance of different variables, subset selection.
Text Books:
1. S. K. Chakraborty, B.K. Sarkar, "Discrete Mathematics and its Applications", Oxford
University Press 2011, ISBN9780198065432.
2. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", McGraw Hill 4 th Edition
Reference Books:
1. N. Biggs, "Discrete Mathematics", Oxford University Press, 2 nd Edition.
2. Singh, "Discrete Mathematical Structures", Wiley ISBN- 9788126527908.
3. Eric Gossett, "Discrete Mathematics with Proof", Wiley 2 nd Edition ISBN-9788126527588.
4. Edgar G. Goodaire and Michael M. Parmenter, "Discrete Mathematics with Graph Theory"
Pearson Education 3 rd Edition, ISBN-13978013167995.
5. Richard Johnsonbaugh, "Discrete Mathematics", Pearson Education, 7 th Edition ISBN:
9332535183.

Understand

2

IT202: Digital Electronics & Computer Organization

Teach	ing Scheme	Examination Scheme										
Lectu	res: 4 Hrs./Week	Continuous	20	Marks								
		Assessment:										
		In-Sem Exam:	30	Marks								
		End-Sem Exam:	50 Marks									
Credi	ts: 4	Total:	10	0 Marks								
Prerequisite Course: Basic Electronics Engineering, Fundamental of Programming Languages												
Course Objectives												
1. To design and implement combinational logic circuits.												
2.	2. To design and implement sequential logic circuits.											
3.	To develop VHDL programs.											
4.	To understand processor organization.											
5.	To understand memory and I/O Organization.											
6.	To understand parallel organization											
Cours	se Outcomes (COs):											
After	successful completion of the course, student wil	l be able to										
	Course Outcome (s)		Bloom'	s Taxonomy								
			Level	Descriptor								
CO1	Design and implementcombinational logic circ	cuits.	3	Apply								
CO2	Design and implement sequential logic circuit	3	Apply									
CO3	Develop VHDL programs.		3	Apply								
CO4	Understand processor organization.		2	Understand								
CO5	Understand memory and I/O Organization		2	Understand								

CO6 Understand parallel organization.

Mapping of C	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	1	2	3	1	-	3	2	-	2	-	3	-
CO2	1	2	3	1	2	3	1	-	3	2	-	2	-	3	-
CO3	1	2	3	1	3	-	-	-	3	2	-	2	-	3	-
CO4	3	1	1	-	-	-	-	-	1	1	1	1	-	3	-
CO5	3	3	1	-	-	-	-	1	1	1	1	1	-	3	-
CO6	3	-	1	-	-	-	-	1	1	1	-	1	-	3	-

	Course Contents		
Unit-I	COMBINATIONAL LOGIC CIRCUITS	No. of Hours	COs
	Number Systems, Boolean Algebra & Logic Minimization, Design of code converters, Design of adders, Multiplexers, Demultiplexer/ Decoders, Encoder.	06	CO1
Unit-II	SEQUENTIAL LOGIC CIRCUITS	No. of Hours	COs
	Introduction to sequential circuits, Flip- Flops, Design of Counters, Modulo counters. Registers, Design of sequence Generator, Pseudo Random Binary Sequence Generator Introduction to SPLD, CPLD, FPGA	06	CO2
Unit-III	INTRODUCTION TO VHDL PROGRAMMING	No. of Hours	COs
	Design flow: Basic Concept of Simulation and Synthesis Introduction to VHDL, Data Objects, Data Types, Attributes, Models of Design, Concurrent Statements Vs Sequential Statements, Design of Digital Circuits	06	CO3
Unit-IV	PROCESSOR ORGANIZATION	No. of Hours	COs
	Computer Evolution, Computer Performance, RISC Vs CISC, Building Data Paths, Pipelined Datapath and Control Data Hazards: Forwarding versus Stalling, Control Hazards	06	CO4
Unit-V	MEMORY AND I/O ORGANIZATION	No. of Hours	COs
Unit-V	MEMORY AND I/O ORGANIZATION Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System	No. of Hours	COs CO5
Unit-V Unit-VI	MEMORY AND I/O ORGANIZATIONIntroduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating SystemPARALLEL ORGANIZATIONS	No. of Hours 06 No. of Hours	COs CO5 COs
Unit-V Unit-VI	 MEMORY AND I/O ORGANIZATION Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System PARALLEL ORGANIZATIONS Introduction, The Difficulty of Creating Parallel Processing Programs, Shared Memory Multiprocessors, Clusters and Other Message-Passing Multiprocessors, Hardware Multithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics Processing Units, Introduction to Multiprocessor Network Topologies, Multiprocessor Benchmarks 	No. of Hours 06 No. of Hours	COs CO5 COs
Unit-V Unit-VI Text Boo	MEMORY AND I/O ORGANIZATION Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System PARALLEL ORGANIZATIONS Introduction, The Difficulty of Creating Parallel Processing Programs, Shared Memory Multiprocessors, Clusters and Other Message-Passing Multiprocessors, Hardware Multithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics Processing Units, Introduction to Multiprocessor Network Topologies, Multiprocessor Benchmarks	No. of Hours 06 No. of Hours 06	COs CO5 COs
Unit-V Unit-VI Unit-VI Text Boo 1. M Mo 2. Mano, Verilo 3. D. Pa	 MEMORY AND I/O ORGANIZATION Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System PARALLEL ORGANIZATIONS Introduction, The Difficulty of Creating Parallel Processing Programs, Shared Memory Multiprocessors, Clusters and Other Message-Passing Multiprocessors, Hardware Multithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics Processing Units, Introduction to Multiprocessor Network Topologies, Multiprocessor Benchmarks ks: mrris Mano, "Digital Design", Prentice Hall, 3rd Edition, ISBN: 0130621218, M. Morris, "Digital Design: with an Introduction to the Verilog HDL, VH g", 6th Edition, Pearson. 	No. of Hours 06 No. of Hours 06	COs CO5 COs CO6
Unit-V Unit-VI Unit-VI Unit-VI Unit-VI	 MEMORY AND I/O ORGANIZATION Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System PARALLEL ORGANIZATIONS Introduction, The Difficulty of Creating Parallel Processing Programs, Shared Memory Multiprocessors, Clusters and Other Message-Passing Multiprocessors, Hardware Multithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics Processing Units, Introduction to Multiprocessor Network Topologies, Multiprocessor Benchmarks ks: rrtis Mano, "Digital Design", Prentice Hall, 3rd Edition, ISBN: 0130621218, M. Morris, "Digital Design: with an Introduction to the Verilog HDL, VH g", 6th Edition, Pearson. tterson, J. Hennessy, "Computer Organization and Design: The Hardace", 4th Edition, 2013, ISBN 978-0-12-374750-1. allings, "Computer Organization and Architecture: Designing for Perform f India, 8th Edition, 2010, ISBN 13: 978-0-13-607373-4. 	No. of Hours 06 No. of Hours 06 DL, Syste lware Somance", Pr	COs CO5 COs CO6 cm ftware rentice

- 1. Flyod, "Digital Principles", Pearson EducationISBN:978-81-7758-643-6.
- 2. John Yarbrough, "Digital Logic applications and Design", Thomson Publication ISBN: 978-0314066756.
- 3. Malvino, D. Leach, "Digital Principles and Applications", 5th edition, Tata McGraw Hill
- 4. R.P. Jain, "Modern Digital Electronics", 3rd Edition, Tata McGraw-Hill, ISBN: 0–07–049492–4.
- 5. Stephen Brown, ZvonkoVranesic, "Fundamentals of Digital Logic with VHDL Design", McGraw-Hill, ISBN: 978–0–07–352953–0.
- 6. J. Bhaskar, "VHDL Primer", Pearson Education, 3rd Edition, ISBN: 0071226249
- 7. C. Hamacher, V. Zvonko, S. Zaky, "Computer Organization", McGraw Hill,5th edition, 2002, ISBN: 007-120411-3.
- 8. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", Wiley, 2014, ISBN: 978-81-265-2284-2.
- 9. A. S. Tanenbaum, "Structured Computer Organization", Prentice Hall of India, 4th Edition, 1991, ISBN: 81-203-1553-7.
- J. Hays, "Computer Architecture and Organization", McGraw-Hill, 2nd Edition, 1988 ISBN 0–07–100479–3.

IT203: Fundamentals of Data Structures

Teaching Scheme	Examination Scheme							
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks						
	In-Sem Exam:	30 Marks						
	End-Sem Exam:	50 Marks						
Credits: 3	Total:	100 Marks						
Prerequisite Course: Computer Fundamentals & Programming CFP-105								

Cours	e Objectives											
1.	To learn linear data structure and its application.											
2.	To learn dynamic memory allocation concepts.											
3.	To learn fundamentals of data structure and its applications.											
4.	To learn algorithm design technique with time and space complexity.											
5.	To learn concept of linked organization for problem solving and program	nming.										
6.	To learn the Stack and Queue data structure											
Cours	e Outcomes (COs):											
After	successful completion of the course, student will be able to											
	Course Outcome (s)	Bloom	's Taxonomy									
		Level	Descriptor									
CO1	Apply appropriate constructs of C language, coding standards for application development.	3	Apply									
CO2	Select appropriate data structures and algorithmic foundations for problem solving and programming.	3	Apply									
CO3	Apply appropriate searching and/or sorting techniques in the application development.	3	Apply									
CO4	Use dynamic memory allocation concepts in various application developments,	3	Apply									
CO5	Analyze the Stack as Linear and Nonlinear data structure on various applications.	4	Analyze									
CO6	Use the Queue as data structure in various ways.	3	Apply									

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	2	-	-	1	1	1	2	3	-	-
CO2	1	1	3	-	3	-	-	-	1	1	1	2	3	-	-
CO3	1	3	1	1	-	3	-	-	1	1	1	2	3	-	-
CO4	2	3	1	1	1	2	-	-	1	-	1	2	3	-	-
CO5	2	3	1	3	1	2	1	-		-	1	2	3	-	-
CO6	2	3	1	3	-	3	-	-	1	-	1	2	3	-	1

	Course Contents							
Unit-I	POINTERS	No. of Hours	COs					
	Multidimensional arrays, Array of structures, storage representation & address calculation of Multidimensional Array, Introduction to Pointers, Dynamic Memory Allocation: malloc(), calloc(), realloc(), free(), pointer to pointer, pointer to single and multidimensional arrays, array of pointers, pointers to string & C string functions using pointers, Structure using pointers, Pointers to functions.	06	CO1					
Unit-II	FUNDAMENTALS OF DATA STRUCTURE	No. of Hours	COs					
	Fundamentals: Data structure, Abstract Data Types, realization of ADT in 'C'. Types of data structure: Primitive non-primitive, linear Non-linear, static dynamic, persistent ephemeral data structures. Performance Analysis of Algorithm: Space Complexity, Time Complexity.	05	CO2					
Unit-III	SEARCHING & SORTING	No. of Hours	COs					
	Searching Algorithms: Linear Search, Binary search their comparison. Internal and external sorting, Sorting Algorithms: Bubble Sort, Selection Sort, Quick Sort, Insertion Sort, and Merge Sort. Time complexity of all sorting algorithms and their comparison.	07	CO3					
Unit-IV	LINKED ORGANIZATION	No. of Hours	COs					
	Linked organization, Types of Linked List: Singly Linked List, Doubly Linked List, Circular Linked List. Linked list as an ADT. Polynomial representation using linked lists.	06	CO4					
Unit-V	STACK	No. of Hours	COs					
	Concept of Sequential organization. Introduction to Stack, Implementation of Stack using sequential organization. Implementation of Stack using Linked organization, Concept of implicit and explicit stack. Applications: Infix to postfix conversion, infix to prefix conversion, Evaluation of prefix and postfix expression, decimal to binary conversion, well-formedness of parenthesis.	06	CO5					
Unit-VI	QUEUE	No. of Hours	COs					
	Concept of queues as ADT, Implementation of queue using sequential & linked organization. Concept of circular queue and its implementation, Concept of double ended queue and its implementation, Concept of priority queue. Applications of queues.	06	CO6					
Text Boo	ks: lis Horowitz, SartaiSahni, Susan Anderson Erzad "Eundamentals of Data S	tructures	in C"					
1. En Ur 2. Ri C,	 Ellis Horowitz, SartajSahni, Susan Anderson-Freed "Fundamentals of Data Structures in C", Universities Press, 2008. Richard F. Gilberg&Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C, Second Edition", Cengage Learning. 							
Reference	e Books:	ation						
1. KC	our seugewick and Kevin wayne, Aigonnins 4th Edition; Pearson Educ	auon,						

ISBN-13: 978-0321573513.

- 2. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C", Galgotia Book
- 3. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- 4. Aaron Tanenbaum, "Data Structures using C", Pearson Education.
- 5. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 6. YashavantKanetkar, "Understanding Pointers in C", BPB Publication.
- 7. YashavantKanetkar, "Let Us C", BPB Publication.

IT 204: Object Oriented Programming

Teaching Scheme	Examination Scheme							
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks						
	In-Sem Exam:	30 Marks						
	End-Sem Exam:	50 Marks						
Credits: 3	Total:	100 Marks						
Prerequisite Course: Computer Fundamentals & Programming CFP-105.								

Course Objectives

- 1. To understand the basics of Object Oriented Programming using C++.
- 2. To understand the principles and techniques of Object Oriented Programming.
- 3. To write a program using classes and objects.
- 4. To develop C++ classes using Overloading and Inheritance.
- 5. To use memory allocation and exception handling features.
- 6. To apply standard template library for problem solving

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Understand the basics of Object Oriented Programming using C++.	2	Understand		
CO2	Understand the principles and techniques of Object Oriented Programming.	2	Understand		
CO3	Write a program using classes and objects.	3	Apply		
CO4	Develop C++ classes using Overloading and Inheritance.	3	Apply		
CO5	Use memory allocation and exception handling features.	3	Apply		
CO6	Apply standard template library for problem solving	3	Apply		

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1		2	1		2	1	3	1	2	3	3		
CO2	3	2	2	2	1		2	1	3	1	1	3	3		3
CO3		3		1	2	1	1	2	2	1	1	2			3
CO4		3	2	1	2		1	2	1	1		2			3
CO5		3		2	1		1	1	1		1	1	2		
CO6		3		2	1		1	1		1		1	2		

	Course Contents		
Unit-I	INTRODUCTION TO C++	No. Of Hours	COs
	C++ Syntax and Semantics, The program development process, Numeric Types, expressions and Output in C++, Macros, Enumerations, Strings, Signatures of functions, passing variables to functions - Reference vs. pointers, Reference vs. value, Keyword const, Default arguments.	06	CO1
Unit-II	OBJECT-ORIENTED PROGRAMMING BASICS	No. of Hours	COs
	Basic class design principles - collaborations and responsibilities; separating interface and implementation; decoupling. Object-oriented principles and techniques - using a polymorphic class hierarchy; abstract base classes for common interface. Major object-oriented idioms and design patterns - providing extensibility and code stability simultaneously.	06	CO2
Unit-III	CLASSES AND OBJECTS	No. Of Hours	COs
	Structures, Pointers to structures, Classes- private and public members, Constructors – Types of constructors, Destructors, The this pointer, Friend functions, Friend classes Conditions, Logical Expressions and Selection Control Structures, Loops, functions, structured types, data abstraction and classes, Arrays, Default parameters, references, bidirectional function parameters.	06	CO3
Unit-IV	OVERLOADING AND INHERITANCE	No. Of Hours	COs
	Pointers to overloaded functions, Overloading constructors, Operator overloading, overloading binary operators, Overloading unary operators, overloading using friend operators, Inheritance, types of inheritance, Constructors, destructors and inheritance, Pointers to derived classes, Virtual functions, Friend functions and inheritance, Polymorphism.	6	CO4
Unit-V	MEMORY ALLOCATION	No. Of Hours	COs
	Dynamic allocation and memory management, destructors, Exception handling, Introduction to the STL, Implementation of basic data structures such as linked lists, stacks, and queues using C++.	6	CO5
Unit-VI	TEMPLATE	No. Of Hours	COs
	Templates, C++ Standard library, Programming for efficiency and Testability, performance measurement, and debugging, standard library string and vector, Stream.	6	CO6
Text Boo	ks:	5 th E.J.	
1. E. Bal	agurusaniy, Object Oriented Programming with C++, McGraw Hill Edition	I J Editio	on.
1. Bjarne 2. Erich Reusa 3. Alice Haven	e Stroustrup, "The C++ Programming Language", 4 th Edition ISBN-13: 978 Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patte ble Object Oriented Programming", Pearson. E. Fischer and David W. Eggert, "Applied C and C++ Programming", Un a, and Michael J. Fischer, Yale University, August 2018.	3-0321563 ern-Eleme iversity o	842. nts of f New

- 4. Dale. N and Weems. C., "Programming and Solving with C++", 4th Edition Jones and Bartlett Publishers, 2004.
- 5. Daniel Du_y, "Introduction to C++ for Financial Engineers: An Object-oriented Approach", 2006.
- 6. Steve Oualline, "Practical C++ Programming", 1995.
- 7. Andrew Haigh, "Object Oriented Analysis & Design", Tata McGraw Hill Edition.
- 8. Herbert Schildt, "Teach Yourself C++", 1992.
- 9. Jesse Liberty, "Teach Yourself C++ in 24 hours", 1999.
- 10. Schildt. H., "C++ from the Ground up", 2nd Edition, Osborne McGraw-Hill, 1998.
- 11. Shtern. V, "Core C++ A Software Engineering Approach", Prentice Hall Publisher, 2000.
- 12. Mary Delemater, Joel Murach, "Murach's C++ Programming", Pub 2018 ISBN: 9781-943872-27-5.
- 13. Bjarne Stroustrup, "A Tour of C++ (C++ In-Depth)", 1st Edition, ISBN-13: 978-0321958310.
- 14. Stanley Lippman, "C++ Primer", 5th Edition ISBN-13: 978-0321714114.

HS205: UNIVERSAL HUMAN VALUES AND PROFESSIONAL ETHICS

Teaching Scheme	Examination Scheme	
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks
	In-Sem Exam:	30 Marks
	End-Sem Exam:	50 Marks
Credits: 3	Total:	100 Marks

Course Objectives

- 1. To make the students aware about the concept and need of value education.
- 2. To help the students appreciate the essential complementarity between values and skills to ensure sustained happiness and prosperity.
- **3.** To facilitate the development of a holistic perspective among the students towards life and profession.
- 4. To facilitate the understanding of harmony at various levels staring from self and going towards family, society and nature.
- 5. To make the students aware about the correlation between engineering ethics and social experimentation in various situations.
- 6. To highlight the importance of professional ethics in the wake of global realities.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's	s Taxonomy	
		Level	Descriptor	
COL	Understand the concept of self exploration as the process of value	2	Understand	
001	education.	2	Onderstand	
CO2	Understand the human being as the coexistence of self and body.	2	Understand	
CO3	Apply the holistic approach for fulfilling human aspirations for the	3	Apply	
005	humans to live in harmony at various levels.	5	Арріу	
CO4	Analyze the universal human order in correlation with professional	1	Analyze	
04	ethics.	+	Allalyze	
CO5	Apply ethical practices in engineering profession.	3	Apply	
CO6	Evaluate the importance of various ethical practices in the wake of	5	Evoluoto	
	global realities.	5	Lvaluate	

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	-	3	-	1	-	2	-	-	-
CO2	-	-	-	-	-	2	-	3	-	1	-	2	-	-	-
CO3	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-
CO4	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-
CO5	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-
CO6	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-

	Course Contents						
Unit-I	INTRODUCTION TO VALUE EDUCATION	No. of Hours	COs				
	Values, Morals and Ethics; Concept and need of value education; Self- exploration as the process for value education; Guidelines for value education; Basic human aspirations and their fulfillment.	06	CO1				
Unit-II	HARMONY IN HUMAN BEING	No. of Hours	COs				
	Human being as the coexistence of self and the body; Discrimination between the needs of the self and the body; The body as an instrument; Harmony in the self; Harmony of the self with the body.	06	CO2				
Unit-III	HARMONY IN THE FAMILY, SOCIETY AND NATURE	No. of Hours	COs				
	Harmony in the family- The basic unit of human interaction; Values in the human to human relationship; Harmony in the society; Vision for the universal human order; Harmony in the nature; Realizing existence as coexistence at all levels.	06	CO3				
Unit-IV	PROFESSIONAL ETHICS	No. of Hours	COs				
	Natural acceptance of human values; Definitiveness of ethical human conduct; Humanistic education and universal human order; Competence in professional ethics; Transition towards value-based life and profession.	06	CO4				
Unit-V	No. of Hours	COs					
	Need of engineering ethics; Senses of engineering ethics; Variety of moral issues; Moral autonomy; Utilitarianism; Engineering as experimentation. Engineers as responsible experimenters; Codes of ethics.	06	CO5				
Unit-VI	GLOBAL ISSUES	No. of Hours	COs				
	Globalization and multi-national corporations; Cross-cultural issues; Business ethics; Environmental ethics; Computer ethics; Bio-ethics; Ethics in research; Intellectual property rights and plagiarism.	06	CO6				
Text Boo	ks:						
 R. R. Gaur, R. Sangal, G. P. Bagaria, "A Foundation Course in Human Values and Professional Ethics", Excel Books Pvt. Ltd. R. S. Naagarazan, "A Textbook on Professional Ethics and Human Values", New Age International (P) Ltd. Publishers 							
Reference	e Books:						
 B. P. Banerjee, "Foundations of Ethics and Management", Excel Books Pvt. Ltd. P. L. Dhar, R. R. Gaur, "Science and Humanism", Commonwealth Publishers. M. K. Gandhi, "The Story of my Experiments with Truth", Discovery Publisher. http://uhv.org.in/. 							
Consideri adaptable should be strictly ba	ng the specific nature of this course, the methodology is explorational and In order to connect the content of this course with practice, minimum 6 conducted with active involvement of the students. The teacher's assess sed on the participation of the students in these activities.	thus unive group act ment show	ersally ivities uld be				

IT206 : Digital Electronics Laboratory								
Teach	ing Scheme	Exa	mination	Scheme				
Lectu	res: 2 Hrs./Week	Teri	n	50 Marks				
		Wor	<u>'k:</u>					
		Ora	l:	NA				
		Prac	ctical:	NA				
Credi	ts: 1	Tota	ıl:	50 Marks				
Prere	quisite Course: Basic Electronics Engineering							
Cours	se Objectives							
1. To	design Combinational logic circuits using SSI & MSI chips.							
2. To	design Asynchronous and Synchronous Counters, MOD Counters	5.						
3. To	implement and simulate using different modelling styles digital ci	rcuits	in VHDI					
4. To	o use digital circuit simulator to simulate digital circuits.							
Cours	se Outcomes (COs):							
After	successful completion of the course, student will be able to							
			Bloom's	s Taxonomy				
	Course Outcome (s)		Level	Descriptor				
CO1	Design Combinational logic circuits using SSI & MSI chips.		3	Apply				
CO2	Design Asynchronous and Synchronous Counters, MOD Counter	s.	3	Apply				
CO3	Implement and Simulate using different modelling styles digital		3	Apply				
005	circuits in VHDL.		5	² ippiy				
CO4	Use Digital circuit simulator to simulate digital circuits.		3	Apply				

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	1	-	-	2	-	-	2	1	-	1	-	3	-
CO2	-	-	3	2	2	3	2	-	3	1	2	1	-	3	-
CO3	-	3	1	-	-	2	-	-	3	1	-	1	-	3	-
CO4	-	-	3	2	2	3	-	-	3	1	2	1	-	3	-

Guidelines: This Digital Laboratory course has Digital Electronics & Logic Design as a core subject. The problem statements should be framed based on Group A, B, C, D mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have two hours to complete that. The practical examination will comprise of implementation and related theory. All assignments From Group A & Group B are to be performed on Digital Trainer Kit and from Group C are to be performed on Xilinx software.

Term work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted on Digital Trainer Kit, Latest version of Open Source Operating Systems and tools.

	Suggested List of Assignments								
Group A	COMBINATIONAL LOGIC DESIGN	No. of Hours	COs						
1	Assignment on Code Conversion using Gates.	2	CO1						
2	Assignment on Adder.	2	CO1						
3	Assignment on Multiplexer & Decoder.	2	CO1						
Group B	SEQUENTIAL LOGIC DESIGN	No. of Hours	COs						
4	Assignment on Up and Down Asynchronous/Synchronous Counters.	2	CO2						
5	Assignment on Module 'n' Counter.	2	CO2						
Group C	No. of Hours	COs							
7	Simulation using Behavioral Modeling.	2	CO3						
8	Simulation using Data Flow & Structural Modeling.	2	CO3						
9	Simulation of Counter/Shift Registers. (Use any modeling Style)	2	CO3						
Group D	DIGITAL SIMULATION TOOLS	No. of Hours	COs						
	Design, construct digital logic circuits and analyze their behavior	2	CO4						
10	through simulation of any one assignment from either Group A or Group B with simulation software like Digital Works 3.0								
Text Books	5:								
1. R.P. Jai 2. J. Bhasl	n, "Modern Digital Electronics", 3 rd Edition, Tata McGraw-Hill, ISB kar, "VHDL Primer", Pearson Education, 3 rd Edition, ISBN: 0071226	N: 0–07–04 249.	9492–4.						
Reference	Books:								
1. Stepher McGrav	Brown, ZvonkoVranesic, "Fundamentals of Digital Logic with VHE w-Hill, ISBN: 978-0-07-352953-0.	DL Design",							
2. John Ya	arbrough, "Digital Logic applications and Design", Thomson Publicat	ion, ISBN:	978-						
031406	6756.								

ľ	T207	: Fundamental	of Data	Structure]	Laboratory	

Teach	ing Scheme	Exar	nination	Scheme	
Lectu	res: 2 Hrs./Week	Tern	n Work:	NA	
		Oral	:	NA	
		Prac	tical:	50 Marks	
Credi	ts: 1	Tota	l:	50 Marks	
Prere	quisite Course: Computer Fundamentals and Programming				
Cours	e Objectives				
1.	To apply knowledge of pointers in different application developme	ent.			
2.	To apply appropriate sorting and searching techniques in the applic	cation	n develop	oment.	
3.	To implement Linear data structures and Use it for different applic	ation	s.		
Cours	e Outcomes (COs):				
After s	successful completion of the course, student will be able to				
			Bloom's	s Taxonomy	
	Course Outcome (s)	[Level	Descriptor	
CO1	Apply knowledge of pointers in different application development		3	Apply	
cor	Apply appropriate sorting and searching techniques in the applicat	tion	2	A	
	development.	3 Apply			
CON	Implement Linear data structures and Use it for differ	rent	nt 2 Am 1		
03	applications.		3	Apply	

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	1	-	-	1	-	1	1	3	-	-
CO2	3	3	2	1	2	1	-	-	1	-	1	1	3	-	-
CO3	2	3	2	1	1	1	-	-	1	-	2	2	3	1	-

Guidelines: This Fundamentals of Data Structures Laboratory course has Fundamentals of Data Structures as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in C Language or C++. Use of open source platform and tools is encouraged

Term work:Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C or C++ Language

Suggested List of Assignments									
Sr. No.	Assignment	No. of Hours	COs						
1.	Assignment based on matrix operations using pointer.	2 Hrs.	CO1						
2.	Assignment based on string operations using pointer.	2 Hrs.	CO1						
3.	Assignment based on array of structures using with and without pointers.	2 Hrs.	CO1						
4.	Assignment based on Linear or Binary Search.	2 Hrs.	CO2						
5.	Assignment based on Bubble Sort or Selection Sort.	2 Hrs.	CO2						
6.	Assignment based on Quick Sort or Insertion Sort.	2 Hrs.	CO2						
7.	Assignment based on Implementation of Stack and Queue and Circular Queue using array.	4 Hrs.	CO3						
8.	Assignment based on implementation Singly Linked list, DLL and Circular LL.	4 Hrs.	CO3						
9.	Assignment based on applications of Stack & Queue.	4 Hrs.	CO3						
10.	Assignment based on Implementation of Stack and Queue using Linked List.	4 Hrs.	CO3						
Text Boo	oks:								
1. E U 2. R C	 Ellis Horowitz, SartajSahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", Universities Press, 2008. Richard F. Gilberg&Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C. Second Edition" Cengage Learning 								
Reference	ee Books:								
1. Y H 2. A	. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and all of India. aron Tanenbaum, "Data Structures using C", Pearson Education.	C++", P	rentice						

- 3. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 4. YashavantKanetkar, "Understanding Pointers in C", BPB Publication.
- 5. YashavantKanetkar, "Let Us C", BPB Publication.

IT208 : Object Oriented Programming Laboratory										
Teaching Scheme	Exa	Examination Scheme								
Lectures: 2 Hrs./Week	Ter	m Work:	NA							
	Ora	l:	50 Marks							
	Pra	ctical:	NA							
Credits: 1	Tota	al:	50 Marks							
Prerequisite Course: Computer Fundamentals and Programming										
Course Objectives										
1. To develop programs by applying concepts of constructors, friend function, inline functions and data abstraction.										
2. To apply OOP principles polymorphism and inheritance to solv	ve probl	ems.								
 To use C++ features templates, exceptions and dynamic men various problems. 	nory all	ocation fo	r solution of							
Course Outcomes (COs):										
After successful completion of the course, student will be able to										
Country Outcome (c)		Bloom's Taxonomy								
Course Outcome (s)		Level	Descriptor							
CO1 Develop programs by applying concepts of constructors, function, inline functions and data abstraction.	friend	3	Apply							
CO2 Apply OOP principles polymorphism and inheritance to problems.	by OOP principles polymorphism and inheritance to solve 3 Apply olems.									
CO3Use C++ features templates, exceptions and dynamic memory allocation for solution of various problems.		3	Apply							

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	3	1	3	1	1	2	3	2	2	3	3	-	-
CO2	3	3	2	1	1	-	1	1	3	2	2	3	3	-	-
CO3	3	2	2	2	2	-	1	1	3	2	2	3	3	-	-

Guidelines: This Object Oriented Programming Laboratory course has Object Oriented Programming as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise implementation and related theory. All assignments are to be performed in C++ Language.

Term Work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of a journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C++ Language.

Suggested List of Assignments									
Sr. No.	Assignments	No. of Hours	COs						
1	Write a menu driven program with class, object and different types of constructors.	2 Hrs.	CO1						
2	Write a program to demonstrate use of Friend function, inline function.	2 Hrs.	CO1						
3	Write a program to demonstrate compile time polymorphism (Operator Overloading/ Function Overloading).	2 Hrs.	CO2						
4	Write a program to demonstrate runtime polymorphism (Virtual Function Concept).	2 Hrs.	CO2						
5	Write a program to demonstrate Encapsulation and Inheritance Concept.	2 Hrs.	CO2						
6	Write a program to demonstrate Memory allocation in C++.	2 Hrs.	CO3						
7	Write a program to demonstrate use of Template in C++.	2 Hrs.	CO3						
8	Write a program to demonstrate Exception Handling concept.	2 Hrs.	CO3						
Text Boo	ks:								
1. E.	Balagurusamy, "Object Oriented Programming with C++", McGraw I	Hill Editi	on 5 th						
Ed	lition.								
2. Ma	aureen Spankle, "Problem Solving and Programming Concepts", Pearson, 2	2011, ISB	3N-13:						
97	8-0132492645.								
Reference	e Books:								
1. Ro	bert Lafore, "Object Oriented Programming in Turbo C++", Sams Publis	hing Edit	ion 4 th						

- 1. Robert Lafore, "Object Oriented Programming in Turbo C++", Sams Publishing Edition 4 Edition.
- 2. Ira Pohl, "Object Oriented Programming using C++", Pearson Education Edition 2nd Edition Reprint 2004.

MC 209 : Indian Constitution (Mandatory Course – III)							
Teaching Scheme	Examination Scheme						
Lectures: 2 Hrs./Week	Term Work:	NA					
	Oral :	NA					
	Practical:	NA					
Credits: Non Credit	Total:	NA					

Course Objectives

- 1. To study the historical background, salient features, preamble and union territories of Indian constitution.
- 2. To study the provision of fundamental right in the Indian constitution.
- 3. To study the directive principle of state policy and fundamental duties.
- 4. To study the system of government through parliamentary and federal system.
- 5. To understand the formation, structure and legislative framework of central government.
- 6. To understand the formation, structure and legislative framework of state government.

Course	Outcomes ((COs):	
Course	o accomes		

After	After successful completion of the course, student will be able to									
	Course Outcome (s)	Bloom's	s Taxonomy							
		Level	Descriptor							
CO1	Describe background, salient features of constitution of India.	1	Remember							
cor	Explain the system of government, it's structure and legislative	2	Understand							
02	framework.									
CO3	Apply the fundamental rights and duties in their life.	3	Apply							

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-

Course Contents											
Unit-I	INTRODUCTION TO CONSTITUTION OF INDIA	No. of Hours	COs								
	Historical background, Salient features, Preamble of constitution, Union and its territory.	7	CO1								
Unit-II	FUNDAMENTAL RIGHTS	No. of Hours	COs								
	Features of fundamental rights, Basic rights: 1. Right to equality; 2. Right to freedom; 3. Right against exploitation; 4. Right to freedom of religion; 5. Cultural and educational rights; 6.Right to property; 7. Right to constitutional remedies.	5	CO3								
Unit-III	DIRECTIVE PRINCIPLE OF STATE POLICY AND FUNDAMENTAL DUTIES	No. of Hours	COs								
	 Directive principle of state policy:Features of directive principle, Classification of directive principle, Criticism of directive principle, Utility of directive principle, Conflict between Fundamental rights and directive principle. Fundamental duties: List of fundamental duties, Features of fundamental duties, Criticism of fundamental duties, Significance of fundamental duties, Swaran Singh Committee Recommendations. 	5	CO3								
Unit-IV	SYSTEM OF GOVERNMENT	No. of Hours	COs								
	 Parliamentary system: Features of parliamentary government, Features of presidential government, merits and demerit of Parliamentary system. Federal system: Federal features of constitution, unitary features of constitution. Centre and state relation: Legislative relation, administrative relations and financial relation. Emergency provision: National emergency, Financial emergency and criticism of emergency provision. 	5	CO2								
Unit-V	CENTRAL GOVERNMENT	No. of Hours	COs								
	 President: Election of president, powers and functions of president, and Veto power of president. Vice-president: Election of vice-president, powers and functions of vice-president. Prime minister: Appointment of PM, powers and functions of PM, relationship with president. Central council of ministers: Appointment of ministers, responsibility of ministers, features of cabinet committees, functions of cabinet committees. Parliament: Organization of parliament, composition of the two houses , duration two houses, membership of parliament. Supreme court (SC): Organization of supreme court, independence of supreme court, jurisdiction and powers of supreme court. 	5	CO2								

Unit-VI	STATE GOVERNMENT	No. of Hours	COs
	 Governor: Appointment of governor, powers and functions of governor, constitutional position. Chief minister: Appointment of CM, powers and functions of CM, relationship with governor. State council of ministers: Appointment of ministers, responsibility of ministers, cabinet. High court (HC): Organization of HC, independence of HC, jurisdiction and powers of HC. Sub-ordinate court: Structure and jurisdiction, LokAdalats, Family court, Gram Nyayalayas. 	5	CO2
Text Boo	ks:		
1. M 5 th 2. Du	Laxmikanth, "Indian Polity for Civil Service Examination", McGrawHill I Edition. arga Das Basu, LexisNexis, "Introduction to the Constitution of India", 22 nd	Education ¹ Edition.	,

	IT210: Microprocessor & Microcontroller										
Teach	ing Scheme	Examination Scheme									
Lectu	res: 4 Hrs./Week	Continuous Asse	20 Marks								
		In-Sem Exam:		30 Marks							
		End-Sem Exam:		50 Marks							
Credi	ts: 4	Total:		100 Marks							
Prere	Prerequisite Course: Computer Organization & Digital Electronics										
Cours	se Objectives										
1.	To use ALP concepts to write the programs.										
2.	2. To understand architectural details of 8086 and 80386 microprocessors.										
3.	3. To understand segmentation mechanism w.r.t. 80386 microprocessor.										
4.	To understand paging and protection in 80386 micro	ocontroller.									
5.	To understand features of 8051 microcontroller.										
6.	To make use of 8051 microcontroller for interfacing	I/O devices.									
Cours	se Outcomes (COs):										
After	successful completion of the course, student will be a	ble to									
	Course Outcome (c)		Bloom's	s Taxonomy							
	Course Outcome (s)		Level	Descriptor							
CO1	Use ALP concepts to write the programs.		3	Apply							
CO2	Explain architectural details of 8086 and 80386 mic	roprocessors.	2	Understand							
CO3	Demonstrate segmentation w.r.t. 80386 microproce	ssor.	3	Apply							
CO4	4 Demonstrate the Paging and Protection concepts. 3										
CO5	Explain features of 8051 microcontroller.		2	Understand							
CO6	Use 8051 for Interfacing I/O devices.		3	Apply							

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	3	-	-	-	-	-	-	-	3	1
CO2	3	1	2	1	1	3	-	-	-	-	-	-	-	3	1
CO3	2	1	3	1	1	2	-	-	-	-	-	-	-	3	1
CO4	2	1	3	1	1	2	1	-	2	-	-	-	-	3	2
CO5	2	3	2	2	1	2	1	-	1	-	-	-	-	3	1
CO6	2	1	3	1	1	2	2	-	2	-	-	-	-	3	2

	Course Contents		
Unit-I	INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING	No. of Hours	COs
	Introduction to assembly language programming. ALP Tools: Assembler, Linker, Loader, Debugger, Emulator. Assembler directives, Far and near procedure, Macros, DOS Interrupts.	08	CO1
Unit-II	INTRODUCTION TO 8086 & 80386 PROCESSOR	No. of Hours	COs
	Introductionto8086Processor:Features,Architecture,Pinconfiguration, Instruction set, Addressing modes.80386Processor:80386Family,Features,Architecture,PinDescription, Register Set, Addressing modes, Instruction set.	08	CO2
Unit-III	SEGMENTATION	No. of Hours	COs
	Segmentation: Introduction, Real mode segmentation.80386ProtectedModeSegmentation:SegmentSelector &Descriptors, Descriptor Types, System Tables (IDT, LDT, GDT),Logical to linear/physical address translation.	08	CO3
Unit-IV	PROTECTION MECHANISM & PAGING	No. of Hours	COs
	 Protection in segmentation: Protection Levels, Privileged instructions, Inter-privilege level transfer using Call gates and conforming code segment. Paging: support registers, Data structures, Descriptors, Linear to physical address translation, Page level protection. Multitasking: TSS, Task Switching. 	08	CO4
Unit-V	INTRODUCTION TO 8051 MICROCONTROLLER	No. of Hours	COs
	 Microprocessor Vs Microcontroller. 8051 microcontroller: 8051 family, Features, Architecture, Pin Description, Register bank and Special Function Registers (SFRs), Addressing modes, Instruction set, External data memory and program memory organization. I/O ports programming: Structures, Related SFRs and Configuration. 	08	CO5
Unit-VI	8051 INTERFACING & APPLICATIONS	No. of Hours	COs
	 Timers/counters programming: Structure, Related SFRs, Operating modes, Delay calculations and Configuration. Serial port programming: Related SFRs, Operating modes, Baud rate calculation and Configuration. Interfacing of displays: LED, LCD, keys, ADC & DAC, stepper motor, Sensors (temperature, pressure). Design of minimum system using 8051 micro-controller for an applications. 	08	CO6

Text Books:

- 1. Peter Abel, NiyazNizamuddin, "IBM PC Assembly Language and Programming", Pearson Education.
- 2. James Turley, "Advanced 80386 Programming Techniques", McGraw Hill Education.
- 3. A. Ray, K.Bhurchandi, "Advanced Microprocessors and peripherals: Arch, Programming & Interfacing", Tata McGraw Hill, 2004, ISBN 0-07-463841-6.
- 4. M. A. Mazidi, J. G. Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education.

Reference Books:

- 1. Intel Datasheets of 8086, 80386 Microprocessors & 8051 Microcontroller.
- 2. Walter A. Tribel, Avtar Singh, "The 8088 and 8086 Microprocessors", 4th Edition, Prentice Hall of India.
- Ray Duncan, "Advanced MS DOS Programming", 2nd Edition, BPB Publications.
 Kenneth Ayala, "The 8051 Micro Controller", 3rd Edition, Delmar Cengage Learning.
- 5. I. Scott MacKenzie, Raphael C.-W. Phan, "8051 Microcontroller", 4th Edition, Pearson Education
- 6. Joshi, "Processor Architecture and Interfacing", Wiley, ISBN-9788126545605.
- 7. Douglas Hall, "Microprocessors and Interfacing", 2nd Edition, 1992, McGraw-Hill, ISBN-0-07-100462-9.

IT 211: Database Management Systems									
Teaching Scheme	Examination Scheme								
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks							
	In-Sem Exam:	30 Marks							
	End-Sem Exam:	50 Marks							
Credits: 3	Total:	100 Marks							
Prerequisite Course: Data Structures									

Course Objectives

- 1. To understand the fundamental concepts of database management.
- 2. To study systematic database design approaches.
- **3.** To devise queries using Relational Algebra, SQL.
- 4. To study basic issues of transaction processing, concurrency control.
- 5. To evaluate query and query optimization technique and learn recovery techniques.
- 6. To learn and understand specialty databases.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Explore fundamental concepts of database management	2	Understand		
CO2	Apply relational algebra and SQL to database.	3	Apply		
CO3	Design systematic database schema	3	Apply		
CO4	Understand transaction management and concurrency control protocols.	2	Understand		
CO5	Optimize the queries and compare recovery scheme	3	Apply		
CO6	Understand large scale databases	2	Understand		

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	3	-	-	1	3	-
CO2	-	2	3	2	-	-	-	-	-	-	-	-	-	-	2
CO3	2	-	-	-	3	-	-	-	-	-	-	-	-	-	2
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO5	2	1	-		-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-		-	-	-	-	-	-	-	3	-	-	-

	Course Contents		
Unit-I	INTRODUCTION TO DBMS	No. of Hours	COs
	 Introduction: Introduction to database systems application, purpose of database system. Introduction to Data models, Three-schema architecture of a database, Components of a DBMS. E-R model: modeling, entity, attributes, relationships, constraints, components of E-R model. Relational model: basic concepts, attributes and domains, concept of integrity and referential constraints, schema diagram. 	06	CO1
Unit-II	RELATIONAL ALGEBRA, SQL and QUERY PROCESSING	No. of Hours	COs
	Relational Algebra: Basic Operations, Selection, projection, joining, outer join, union, difference, intersection, Cartesian product, division operations (examples of queries in relational algebraic using symbols). Introduction to SQL: Characteristics and advantages, SQL Data Types and Literals, DDL, DML, DCL, SQL Operators, Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updating using Views, Indexes, Nulls, SQL DML Queries: SELECT Query and clauses, Set Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of Tuples, Aggregate Functions, Nested Queries, Database Modification using SQL Insert, Update and Delete Queries. procedure and functions, triggers and cursors, Embedded SQL.	06	CO2
Unit-III	DATABASE DESIGN USING NORMALIZATION	No. of Hours	COs
	Functional Dependency, Purpose of Normalization, Data Redundancy and Update Anomalies, Single Valued Normalization: 1NF, 2NF, 3NF, BCNF. Decomposition: lossless join decomposition and dependency preservation, Decomposition Algorithms. Multi valued Normalization (4NF), Join Dependencies and the Fifth Normal Form.	06	CO3
Unit-IV	TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL	No. of Hours	COs
	Transactions : Basic concept of a Transaction, Transaction Management, Properties of Transactions, Concept of Schedule, Serial Schedule, Serializability : Conflict and View, Cascaded Aborts, Recoverable and No recoverable Schedules. Concurrency Control : Time-stamps and locking protocols, validation- based protocols, multiple granularity protocols, deadlock handling.	06	CO4
Unit-V	RECOVERY SYSTEM AND QUERY OPTIMIZATION	No. of Hours	COs
	RecoverySystem:Shadow-Paging and Log-Based Recovery, Checkpoints.Query Processing:Overview, Measures of query cost, Evaluation of expression, Materialization and Pipelining algorithm.Query Optimization:Transformation of Relational Expressions, Cost- based optimization, Heuristics in Optimization	6	CO5
Unit-VI	EMERGING DATABASE TECHNOLOGIES	No. of Hours	COs
	JSON: Overview, Data Types, Objects, Schema, JSON with	6	CO6

Java/PHP/Ruby/Python.
Introduction to No SQL Databases: SQLite Database, XML Databases,
MongoDB: MongoDB CRUD Operations, MongoDB Operators,
Aggregation, Indexes, MongoDB Cloud, MongoDB Connectivity
Text Books:
1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", 6 th
Edition, McGraw Hill, 2010.
2. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", 2 nd Edition,
McGraw Hill International Editions, ISBN 978-0072465631.
3. Kristina Chodorow and MongoDB, "The Definitive Guide", 2 nd Edition, O'Reilly
Publications, ISBN: 978-93-5110-269-4.
Reference Books:
1. RamezElmasri and Shamkant B. Navathe, "Fundamental Database Systems", 3 rd Edition,
Pearson Education, 2003, ISBN 978-0321204486.
2. "Big Data Black Book", DT Editorial services, 2015 Edition.
3. Hellerstein, Joseph, and Michael Stonebraker, "Readings in Database Systems (The Red
Book)", 4 th Edition, MIT Press, 2005, ISBN: 9780262693141.

Teach	ing Scheme Examin	ation Scheme							
Lectu	res: 4 Hrs./Week Continu	ous	20 Marks						
	Assessm	ent:							
	In-Sem	Exam:	30 Marks						
	End-Sei	n Exam:	50 Marks						
Credi	ts: 4 Total:		100 Marks						
Prere	quisite Course: Basic of Mathematics								
Cours	se Objectives								
 To Understand the concept of Vector integral. To Apply core concept Higher Order Differential Equation applied problems in engineering. To Analyse the Problem of Series Solution Of Differential Equations. To Understand the core concept of Partial Differential Equation. To Use PDEs in Various Applications . Course Outcomes (COs): After successful completion of the course, student will be able to 									
	Course Outcome (s)	Bloom'	s Taxonomy						
		Level	Descriptor						
CO1	Know and recall core knowledge of Scalar and vector function	or 1	Remember						
CO2	Understand the concept of Vector integral	2	Understand						
CO3	Apply core concept Higher Order Differential Equation applied 3 Apply								
CO4	Analyse the problem of Series Solution Of Differentiate Equation.	al 3	Apply						
CO5	Understand the core concept of Partial Differential Equation	2	Understand						
CO6	Use of PDEs in various Application	3	Apply						

Mapping	of Cou	rse Out	comes	s to Prog	ram Ou	itcome	es (POs) & Pr	ogram	n Specif	ic Out	omes (PSOs):		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-

	Course Contents		
Unit-I	VECTOR DIFFERENTIATION	No. of Hours	COs
	Scalar and vector point function, Derivative of a vector point function, Gradient of scalar function \emptyset , Directional derivative, Divergence and Curl of vector point function, Solenoidal and irrotational vector field and scalar potential, vector identities.	08	CO1
Unit-II	VECTOR INTEGRATION	No. of Hours	COs
	Line integral, Greens theorem, Work done, Conservative field, surface integral, Stokes theorem, volume integral, Gauss Divergence theorem.	08	CO2
Unit-III	HIGHER ORDER DIFFERENTIAL EQUATION	No. of Hours	COs
	Homogeneous and non homogeneous linear differential equation of n th order and its solution, Method of variation of parameter, operator method for particular integral, solution of certain types of linear differential equation:-Cauchy's and Legendre's differential equation.	08	CO3
Unit-IV	SERIES SOLUTION OF DIFFERENTIAL EQUATION	No. of Hours	COs
	Linear differential equations with variable coefficients, solution about ordinary point, about singular point (Frobenius method) series solution of Bessel's equation, series solution of Legendre's equation.	08	CO4
Unit-V	PARTIAL DIFFERENTIAL EQUATION	No. of Hours	COs
	Formation of partial differential equation, Partial differential equation of order one (linear and nonlinear), Charpit method, PDE of higher order with constant coefficient.		CO5
Unit-VI	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION	No. of Hours	COs
	One dimensional heat equation, Wave equation, Two dimensional heat equation (Laplace equation), Telephone equation, Radio equations.	08	CO6
Text Book	s:	I	
1. B. S	S. Grewal, "Higher Engineering Mathematics", 42/e, Khanna Publishers, 2012,	ISBN-13	8:978-
2. N.	P. Bali and Manish Goyal, "A Text Book of Engineering, Mathematics"	', 8/e, La	akshmi
Pub 3 H k	lications, 2012. ISBN: 9788131808320. C Das "Engineering Mathematics" S Chand 2006 ISBN-8121905209 .		
Reference	Books:		
1. K.A	A. Stroud & D. S. Booth, "Advanced Engineering Mathematics", Indust	rial Pres	s, 5/e,
201	1, ISBN-9780831134495.	-	
2. P. C	C. Matthews, "Vector Calculus", Springer, 2/e, 2012, ISBN-978354076180	8.	
3. Rot	bert C. Wrede, "Introduction to vector and tensor analysis", Dover, 2013.	1	
4. W.	E. Boyce, R. C. Diprima, "Elementary differential equation and boundary values". John Wiley, & Song. 2012, ISBN 078-0-470-45821-0822	alue	
prot קרו	UICHIS, JUHH WHEY & SUHS, 2012, ISDIN-9/0-0-4/0-43831-0855. K Jain and S. R. K. Ivengar "Advanced Engineering Mathematics" Naros	a Publich	ina
Hou	ise, 2014. ISBN-13: 978-1842653418.	a i uoiisii	шg
6. Erw	vin Kreyszig, "Advanced Engineering Mathematics", Wiley, 9/e, 2013.		

IT213: Data Structures and Files

Teaching Scheme	Examination Scheme	
Lectures: 4 Hrs./Week	Continuous Assessment:	20 Marks
	In-Sem Exam:	30 Marks
	End-Sem Exam:	50 Marks
Credits: 4	Total:	100 Marks
Prerequisite Course: Fundamentals of Data Structures		

Course Objectives

- 1. To apply appropriate data structures to implement Trees.
- 2. To apply appropriate data structures to implement Graphs.
- 3. To apply heap data structure for problem solving.
- 4. To apply the different hashing functions.
- 5. To understand the different types of Search tree
- 6. To understand and Implement different File organizations.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Apply appropriate data structures to implement Trees.	3	Apply		
CO2	Apply appropriate data structures to implement Graphs.	3	Apply		
CO3	Apply heap data structure for problem solving.	3	Apply		
CO4	Apply the different hashing functions.	3	Apply		
CO5	Understand the different types of Search tree.	2	Understand		
CO6	Understand and Implement different File organizations.	3	Apply		

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	2	2	1	3	2	2	2	3	-	2
CO2	3	1	3	1	1	2	2	1	3	2	2	2	3	-	2
CO3	2	3	3	1	1	1	-	1	2	2	2	2	3	-	2
CO4	2	1	3	1	1	1	-	1	2	2	2	2	3	-	2
CO5	1	3	2	1	1	1	-	-	2	2	1	-	3	-	2
CO6	1	1	2	1	1	2	1	-	2	2	1	3	3	-	2

	Course Contents		
Unit-I	TREES	No. of Hours	COs
	Trees and binary trees-concept and terminology. Expression tree. Conversion of general tree to binary tree. Binary tree as an Abstract Data Type(ADT). Recursive and non-recursive algorithms for binary tree traversals, construction of tree from its traversals, Binary search trees, Binary search tree as ADT, Applications of trees.	08	CO1
Unit-II	GRAPHS	No. of Hours	COs
	Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list, Depth First Search and Breadth First Search traversal. Prim's and Kruskal's algorithms for minimum spanning tree, shortest path using Warshall's and Dijkstra's algorithm, topological sorting.	08	CO2
Unit-III	TABLES	No. of Hours	COs
	Symbol Table: Notion of Symbol Table, OBST, Huffman's algorithm, Heap data structure, Min and Max Heap, Heap sort implementation, applications of heap: priority queue.	08	CO3
Unit-IV	HASH TABLES	No. of Hours	COs
	Hash tables and scattered tables: Basic concepts, hash function, characteristics of good hash function, different key-to-address transformations techniques, synonyms or collisions, collision resolution techniques- linear probing, quadratic probing, rehashing, chaining without replacement and chaining with replacement.	08	CO4
Unit-V	SEARCH TREE	No. of Hours	COs
	Concept of threaded binary tree, AVL Trees, Concept of red and black trees, Multiway Trees: B trees, B+ trees, Splay trees.	08	CO5
Unit-VI	FILE ORGANIZATION	No. of Hours	COs
	External storage devices, File, File types and file organization: Sequential, Index sequential and Direct access, Primitive operations and implementations for each type. Comparison of file organizations.	08	CO6
Text Boo	ks:		
1. TI A 2. R. Le 3. Sa	nomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, " Igorithms", 2 nd Edition, The MIT Press, 2001, ISBN 0-262-03293-7. Gilberg, B. Forouzan, "Data Structure: A Pseudo code approach with earning. artajSahni, "Data Structures, Algorithms and Applications in C++" niversities Press.	Introducti C++", Ce ', 2 nd E	on to engage dition,
Referenc	e Books:		
1. Ro	obert Sedgewick and Kevin Wayne, "Algorithms", 4 th Edition; Pearson Ec 8: 978-0321573513.	lucation,	ISBN-
2. E. Ec	Horowitz, S. Sahni, S. Anderson-freed, "Fundamentals of Data Struct lition, University Press, ISBN 978-81-7371-605-8.	tures in C	C", 2 nd
3. E.	Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in	C++", Ga	algotia

Book.

- 4. Alan Tharp, "File Organization and Processing", Willey India edition.
- 5. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- **6.** Goodrich, "Data Structures and Algorithms in C++", Wiley.

11214. Database Management Systems Laborat	IT214:	Database	Management S	Systems	Laborato
--	--------	----------	--------------	---------	----------

Teaching Scheme	Examination Schem	e									
Lectures: 2 Hrs./Week	Lectures: 2 Hrs./WeekTerm Work:50 Marks										
	N	4									
	N	4									
Credits: 1	50	Marks									
Prerequisite Course: Database Management Systems											
Course Objectives											
1. To implement ER models using DDL, DML and DCL commands.											
2. To develop applications using stored procedures	s, triggers and cursors.										
3. To populate and query a database using Mongol	OB commands.										
Course Outcomes (COs):											
After successful completion of the course, student will	be able to										
		Bloom's	s Taxonomy								
Course Outcome (s)		Level	Descriptor								
CO1 Implement ER models using DDL, DML and	3	Apply									
CO2 Develop applications using stored procedures	, triggers and cursors.	3	Apply								
CO3 Populate and query a database using Mongol	OB commands.	3	Apply								

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	1	_	-	-	-	-	-	2	-	-	1	3	-
CO2	1	2	-	-	-	-	-	-	-	-	-	-	-	-	3
CO3	1	-	2	-	3	-	-	-	-	-	-	-	-	-	1
CO4	1	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	3	-	-	-	-	-	-	1	-	-
CO6	-	-	-	-	3	-	-	-	-	3	2	-	-	-	-

Guidelines: This Database System Laboratory course has Database Systems as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have two hours to complete that. The oral examination will comprise of implementation and related theory. All assignments are to be performed in open source software tools. Use of open source platform and tools is encouraged. **Term work:** Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted on open source software tools

	Suggested List of Assignments		
Sr. No.	Assignment	No. of Hours	COs
1	Design any database with at least 3 entities and relationships between them. Apply DCL and DDL commands.	2	CO1
2	Design and implement a database and apply at least 10 different DML queries. Make use of wild characters and LIKE operator, Make use of Boolean and arithmetic operators.	2	CO1
3	Design and implement a database and apply the aggregate functions like count, sum, avg etc. Use group by and having clauses.	2	CO1
4	Implement nested sub queries. Perform a test for set membership (in, not in), set comparison (<some,>=some, <all etc.).<="" td=""><td>2</td><td>CO2</td></all></some,>	2	CO2
5	Write and execute triggers on suitable database.	2	CO2
6	Write and execute PL/SQL stored procedure/function using cursors to perform a suitable task on the database.	2	CO2
7	 Create a database with suitable example using MongoDB and implement CRUD operations. Inserting and saving document Removing document Updating document (document replacement, using modifiers, upserts, updating multiple documents, returning updated documents) 	2	CO3
8	 Execute at least 10 queries on any suitable MongoDB database that demonstrates following querying techniques: Find and findOne (specific values) Query criteria (Query conditionals, OR queries, \$not, Conditional semantics) Type-specific queries (Null, Regular expression, Querying arrays) 	2	CO3
9	 Execute at least 10 queries on any suitable MongoDB database that demonstrates following: \$ where queries Cursors (Limits, skips, sorts, advanced query options) 	2	CO3
10	Implement Map reduce example with suitable example.	2	CO3
Refer	ence Books:		
1. 2. 3	Ivan Bayross, "SQL, PL/SQL: The Programming Language of Oracle", BPB Weinberg, Paul N., et al. "SQL, the Complete Reference", McGraw-Hill, 2010 Kristina Chodorow, "MongoDB The definitive guide", O'Reilly Publications	Publicatio	on. 78-

 Kristina Chodorow, "MongoDB The definitive guide", O'Reilly Publications, ISBN: 978-93-5110-269-4, 2nd Edition.

4. Dr. P. S. Deshpande, "SQL and PL/SQL for Oracle 10g Black Book", Dream Tech.

5. George Reese and Randy Jay Yarger, "Managing And Using MySQL", O Reilly.

	IT215 : Microprocessor & Micro-controller Laboratory										
Teaching	g Scheme	Examination Sch	eme								
Lectures	: 2 Hrs./Week	Term Work:	N	A							
	Oral : 50 Marks										
	Practical: NA										
Credits:	Credits: 1 Total: 50 Marks										
Prerequi	isite Course: Microprocessor & Micro-controller	•									
Cours	e Objectives										
1.	To develop ALP using macros and procedures.										
2.	To use DOS interrupts for file operations.										
3.	To develop 8051 based programs.										
4.	To develop 8051 interface with I/O										
Cours	e Outcomes (COs):										
After s	successful completion of the course, student will b	be able to									
			Bloom'	s							
	Course Outcome (s) Taxonomy										
			Level	Descriptor							
CO1	Develop ALP using macros and procedures.		3	Apply							
CO2	Use DOS interrupts for file operations.		3	Apply							
CO3	Develop 8051 based programs.		3	Apply							
CO4	Develop 8051 interface with I/O devices		3	Apply							

Mapp (PSOs	oing of s):	f Cour	se Out	tcome	s to Pı	ograi	n Ou	tcom	es (PC) s) & 1	Progra	ım Spe	ecific O	utcome	s
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

Г

	POI	PO2	PO3	PO4	POS	PO6	PO/	PO8	PO9	POIO	POIT	POIZ	PSOI	PSO2	PSO3
CO1	3	1	2	1	1	1	2	-	1	-	-	-	-	3	2
CO2	3	1	2	1	1	1	2	-	3	2	1	-	-	3	2
CO3	2	1	3	1	1	1	-	-	2	1	-	-	-	3	2
CO4	2	1	3	1	1	1	-	-	2	1	-	-	-	3	2

Guidelines: This Microprocessor & Micro-controller Laboratory course has Microprocessor & Microcontroller as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in MASM/TASM, TURBO DEBUGGER, 8051 Simulator and 8051 Trainer kit with interfacing devices. Use of open source platform and tools is encouraged

Term work:Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in 8086 and 8051 ALP.

	Suggested List of Assignments		
Group A	MICROPROCESSOR PROGRAMMING USING 8086	No. of Hours	COs
1.	Assignment on addition of N numbers stored in the memory using macros.	2 Hrs.	CO1
2.	Assignment on number conversion using macros.	2 Hrs.	CO1
3.	Assignment on string manipulations using near and far procedure.	2 Hrs.	CO2
4.	Assignment on File operation using DOS interrupts.	2 Hrs.	CO2
Group	MICDO CONTDOL I ED DDOCDAMMINC	No. of	CO
В	MICKO-COMI KOLLEK I KOGKAMIMING	Hours	COS
B 5.	Assignment on memory block transfer.	Hours 2 Hrs.	CO3
B 5. 6.	Assignment on memory block transfer. Assignment on Timer programming: ISR based.	Hours2 Hrs.2 Hrs.	CO3 CO3
B 5. 6. 7.	Assignment on memory block transfer. Assignment on Timer programming: ISR based. Assignment on ADC and Sensor (Eg. Temperature) Interfacing.	Hours 2 Hrs. 2 Hrs. 2 Hrs.	CO3 CO3 CO4
B 5. 6. 7. 8.	Assignment on memory block transfer. Assignment on Timer programming: ISR based. Assignment on ADC and Sensor (Eg. Temperature) Interfacing. Assignment on LCD interfacing.	Hours 2 Hrs. 2 Hrs. 2 Hrs. 2 Hrs. 2 Hrs.	CO3 CO3 CO4 CO4
B 5. 6. 7. 8. Referenc	Assignment on memory block transfer. Assignment on Timer programming: ISR based. Assignment on ADC and Sensor (Eg. Temperature) Interfacing. Assignment on LCD interfacing. e Books:	Hours 2 Hrs. 2 Hrs. 2 Hrs. 2 Hrs.	CO3 CO3 CO4 CO4

2. Ray Duncan, "Advanced MS DOS Programming", 2nd Edition, BPB Publications.

- 3. Intel 8051 Micro-controller Manual.
- 4. M. A. Mazidi, J. G. Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education.

IT216 : Data Structures	& Files Laboratory
-------------------------	--------------------

			•	
Τ	eachin	g Scheme Examination Sch	neme	
L	Lecture	s: 2 Hrs./Week Term Work:	NA	
		Oral :	NA	L
		Practical:	50	Marks
C	Credits:	Total:	50	Marks
P	rerequ	isite Course: Fundamentals of Data Structures, C++ Programming.		
	Cours	se Objectives		
	1.	To implement Trees and perform traversals.		
	2.	To implement Graphs and Heap.		
	3.	To apply hashing concepts and manipulate databases using different	nt file organi	zations.
	Cours	se Outcomes (COs):		
	After	successful completion of the course, student will be able to		
			Bloom'	S
		Course Outcome (s)	Taxono	my
			Level	Descriptor
	CO1	Implement Trees and perform traversals.	3	Apply
	CO2	Implement Graphs and Heap.	3	Apply
	CO3	Apply hashing concepts and manipulate databases using different file organizations.	ent 3	Apply

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO3
CO1	2	-	3	1	1	2	2	2	3	1	1	2	3	-	2
CO2	2	-	3	1	1	2	2	2	3	1	1	2	3	-	2
CO3	2	-	3	1	1	2	2	2	3	1	1	2	3	-	2

Guidelines: This Advanced Data Structures Laboratory course has Advanced Data Structures as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise implementation and related theory. All assignments are to be performed in C++ Language. **Term Work:** Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of a journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C++ Language.

	Suggested List of Assignments		
Sr. No.	Assignments	No. of Hours	COs
1	Assignment based on implementation of tree.	2 Hrs.	CO1
2	Assignment based on traversal of tree.	2 Hrs.	CO1
3	Assignment based on minimum spanning tree.	2 Hrs.	CO1
4	Assignment based on shortest path in graph.	2 Hrs.	CO2
5	Assignment based on implementation of priority queue as application of heap.	2 Hrs.	CO2
6	Assignment based on Implement hash table.	2 Hrs.	CO3
7	Assignment based on implementation of advanced tree.	2 Hrs.	CO3
8	Assignment based on file organizations.	2 Hrs.	CO3
Books:			
Reference	e Books:		
1. R Le	. Gilberg, B. Forouzan, "Data Structure: A Pseudo code approach earning.	with C++'	', Cengage

- 2. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C++", Galgotia Book.
- SartajSahni, "Fundamentals of Data Structures", University Press.
 Robert Sedgewick and Kevin Wayne, "Algorithms" 4th Edition; Pearson Education, ISBN-13: 978-0321573513.
- 5. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- 6. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 7. A. Tharp, "File Organization and Processing", Willey India Edition.
- 8. G. A.V, Pai, "Data Structures and Algorithms", McGraw Hill.

		IT217 : Seminar											
Т	eachin	g Scheme	Exa	mination	Scheme								
L	ecture	s: 2 Hrs./Week	Ter	m 	NA								
	Oral : 50 Mark												
	Practical: NA												
C	redits:	2	Tot	al:	50 Marks								
P	rerequ	isite Course: Basic Communication, Reading Skill and writing sl	kill.										
	Cours	se Objectives											
	1. To acquaint with basic technical writing concepts and terms, such as audience analysis,												
		jargon, format, visuals, and presentation.											
	2.	To reframe the literature and present using multimedia and prese	entat	ion skills.									
	3.	To analyze and summarize the literature survey and prepare tech	nnica	l reports.									
	Cours	se Outcomes (COs):											
	After	successful completion of the course, student will be able to											
				Bloom's	Taxonomy								
		Course Outcome (s)		Level	Descriptor								
	CO1	Acquaint with basic technical writing concepts and terms, such	as	2	Understand								
		audience analysis, jargon, format, visuals, and presentation.		-									
	CO2	Reframe the literature and present using multimedia and presentation skills.		3	Apply								
	CO3	Analyze and summarize the literature survey and prepare technical reports.		4	Analyze								

Map	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	3	2	-	1	-	3	2	-	-	-	-	3
CO2	-	-	-	3	2	-	1	-	3	2	-	-	-	-	3
CO3	-	-	-	3	2	-	1	-	3	2	-	-	-	-	3

Course Content
Context
 Each student will select a multidisciplinary topic in the area of Engineering and Technology preferably keeping track with recent technological trends and development beyond scope of syllabus avoiding repetition in consecutive years. The topic must be selected in consultation with the institute guide. Each student will make a seminar presentation using audio/visual aids for a duration of 20-25 minutes and submit a seminar report prepared in Latex only. Seminar Log book should be compulsorily maintained. Seminar should make the student attain skills like: a) Gathering of literature in a specific area in a focused manner. b) Effectively summarizing the literature to find state-of-the-art in the proposed area. c) Identifying scope for future work. d) Reporting literature review and proposed work in a scientific way using good
Guidelines for Seminar Work Evaluation:
A panel of examiners along with a guide will assess the seminar work based on following
parameters:
a) Relevance of topic - 05 Marks
b) Relevance + depth of literature reviewed- 10 Marks
c) Seminar report (Technical Content) - 10 Marks
d) Seminar report (Language) - 05 Marks
e) Presentation Slides - 05 Marks
f) Communication Skills - 05 Marks
g) Question and Answers - 10 Marks
Note: Student will prepare a seminar report as per the template given by the department. They
should prepare and public a review paper based on their seminar work and publish/present it in a
suitable journal/conference.
• Oral examination in the form of presentation will be based on the project and seminar work
completed by the candidates
• Seminar report must be presented during the presentation.
Reference Books:
1 Rebecca Stott Cordelia Bryan Tory Young "Speaking Your Mind: Oral Presentation and
Seminar Skills (Sneak-Write Series)" Longman ISBN-13: 978-0582382435
2. Johnson-Sheehan Richard "Technical Communication" Longman ISBN 0-321-11764-6

3. VikasShirodka, "Fundamental skills for building Professionals", SPD, ISBN: 978-93-5213-146-5.

Examination Scheme Lectures: 4 Hrs./Week Term Work: 50 Marks Oral : NA Practical: NA Practical: NA Practical: NA Prerequisite Course: Fundamental of Programming Languages. 50 Marks Course Objectives Total: 50 Marks 1. To use modular programming approach and programming skills in diversified problen domains. 2. 2. To use specialized features of the technological tools to provide effective solutions. 3. 3. To analyze real world problem using domain knowledge and analytical skills. 4. 4. To demonstrate the concepts, principles, strategies and methodologies of wel applications. 50 Marks Course Outcome (s) 4. To demonstrate the concepts, student will be able to Bloom's Taxonomy Level Descriptor diversified problem domains. 3 Apply CO2 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Obecompting Language for the techno	IT218 : Mini Project												
Lectures: 4 Hrs./Week Term Work: 50 Marks Oral: NA Practical: NA Practical: NA Credits: 2 Total: 50 Marks Prerequisite Course: Fundamental of Programming Languages. Total: 50 Marks Course Objectives In Total: 50 Marks 1. To use modular programming approach and programming skills in diversified problem domains. In To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Bloom's Taxonomy Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of world analytical skills. 4 <th>Teac</th> <th>hing Scheme E</th> <th>Exami</th> <th colspan="4">nination Scheme</th>	Teac	hing Scheme E	Exami	nination Scheme									
Oral : NA Practical: NA Practical: NA Credits: 2 Total: 50 Marks Prerequisite Course: Fundamental of Programming Languages. Course Objectives Interval 1. To use modular programming approach and programming skills in diversified problem domains. Interval To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. Interval Interval 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Interval Interval Course Outcomes (COs): After successful completion of the course, student will be able to Interval Interval CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies 2 Understand	Lect	ires: 4 Hrs./Week	Work: 50 Marks										
Credits: 2 Total: S0 Marks Prerequisite Course: Fundamental of Programming Languages. Course Objectives 1. To use modular programming approach and programming skills in diversified problen domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COS): After successful completion of the course, student will be able to Ecourse Outcome (s) Use modular programming approach and programming skills in diversified problem domains. Course Outcome (s) Teole deatures of the technological tools to provide effective solutions. Outcomes (COS): After successful completion of the course, student will be able to Elevel Description Course Outcome (s) I evel Outcome (s) Tevel Description Outs especialized features of the technological tools to provide effective solutions. Course Outcome (s) Course outcome (s				NA									
Total: S0 Marks Prerequisite Course: Fundamental of Programming Languages. Course Objectives Iteration 1. To use modular programming approach and programming skills in diversified problem domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Col1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 3 Apply CO4 Demonstrate the concepts, principles, strategies and methodologies of well applications. 3 Apply			cal: NA										
Prerequisite Course: Fundamental of Programming Languages. Course Objectives Image: Course Course Course of the programming approach and programming skills in diversified problem domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): End to be application of the course, student will be able to After successful completion of the course, student will be able to Bloom's Taxonomy Co1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide and analytical skills. 3 Apply CO2 Use specialized features of the technological tools to provide and analytical skills. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of an analytical skills. 2 Understand	Crea		l otal:		50 Marks								
Course Objectives 1. To use modular programming approach and programming skills in diversified problem domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Col Use modular programming approach and programming skills in diversified problem domains. CO1 Use modular programming approach and programming skills in diversified problem domains. CO2 Use specialized features of the technological tools to provide and analytical skills. CO3 Analyze real world problem using domain knowledge and analytical skills. CO3 Course Outcome (s) CO3 Analyze real world problem using domain knowledge and analytical skills. CO4 Demonstrate the concepts, principles, strategies and methodologies and methodologies after solutions.	Prer	equisite Course: Fundamental of Programming Languages.											
1. To use modular programming approach and programming skills in diversified problem domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Course Outcome (s) Bloom's Taxonomy Level Descripton CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web analytical skills. 2 Understand	Co	urse Objectives											
domains. 2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Col Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze real world problem using domain knowledge and analytical skills. CO4 Demonstrate the concepts, principles, strategies and methodologies of well analytical skills. 2 Understand		1. To use modular programming approach and programming sk	ills in	n diversif	fied problem								
2. To use specialized features of the technological tools to provide effective solutions. 3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Level Descripton CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide analytical skills. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of well analytical skills. 2 Understand		domains.	00										
3. To analyze real world problem using domain knowledge and analytical skills. 4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Level Descriptor CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web analytical skills. 2 Understand		2. To use specialized features of the technological tools to provide effective solutions.											
4. To demonstrate the concepts, principles, strategies and methodologies of well applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Level Descriptor CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies 2 Understand		3. To analyze real world problem using domain knowledge and an	alytic	al skills.	0 1								
applications. Course Outcomes (COs): After successful completion of the course, student will be able to Bloom's Taxonomy Level Descripton Course Outcome (s) Taxonomy Level Descripton CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web applications. 2 Understand		4. To demonstrate the concepts, principles, strategies and	met	hodologi	es of web								
Course Outcomes (COS): After successful completion of the course, student will be able to Course Outcome (s) Bloom's Taxonomy Course Outcome (s) Bloom's Course Outcome (s) Level Descriptor CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web amplications. 2 Understand		applications.											
After successful completion of the course, student will be able to Bloom's Taxonomy Level Descriptor CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web applications. 2 Understand	Co	urse Outcomes (COs):											
Bloom's Taxonowy Level Descriptor CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web applications. 2 Understand	Af	ter successful completion of the course, student will be able to											
Course Outcome (s) Taxonomy Level Descripton CO1 Use modular programming approach and programming skills in diversified problem domains. 3 Apply CO2 Use specialized features of the technological tools to provide effective solutions. 3 Apply CO3 Analyze real world problem using domain knowledge and analytical skills. 4 Analyze CO4 Demonstrate the concepts, principles, strategies and methodologies of web applications. 2 Understand				Bloom's									
Level DescriptorCO1Use modular programming approach and programming skills in diversified problem domains.3ApplyCO2Use specialized features of the technological tools to provide effective solutions.3ApplyCO3Analyze real world problem using domain knowledge and analytical skills.4AnalyzeCO4Demonstrate the concepts, principles, strategies and methodologies of web applications.2Understand		Course Outcome (s)	_	Taxonomy									
CO1Use modular programming approach and programming skills in diversified problem domains.3ApplyCO2Use specialized features of the technological tools to provide effective solutions.3ApplyCO3Analyze real world problem using domain knowledge and analytical skills.4AnalyzeCO4Demonstrate the concepts, principles, strategies and methodologies 				Level	Descriptor								
CO2Use specialized features of the technological tools to provide effective solutions.3ApplyCO3Analyze real world problem using domain knowledge and analytical skills.4AnalyzeCO4Demonstrate the concepts, principles, strategies and methodologies of web applications.2Understand	CC	Use modular programming approach and programming skills diversified problem domains.	s in	3	Apply								
CO3Analyze real world problem using domain knowledge and analytical skills.4AnalyzeCO4Demonstrate the concepts, principles, strategies and methodologies of web applications2Understand	CC	CO2Use specialized features of the technological tools to provide effective solutions.3Apply											
CO4 Demonstrate the concepts, principles, strategies and methodologies 2 Understand	CC	Analyze real world problem using domain knowledge analytical skills.	and	4	Analyze								
or web appreations.	CC	Demonstrate the concepts, principles, strategies and methodolo of web applications.	gies	2	Understand								

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	3	3	1	-	3	3	2	3	2	-	3
CO2	3	1	2	1	3	2	1	-	3	3	2	3	2	-	3
CO3	2	3	2	2	3	1	1	-	3	3	2	3	2	-	3
CO4	3	2	1	1	3	1	1	-	3	3	2	3	2	-	3

Guidelines: This Mini Project Laboratory course has Programming Languages as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students will develop a web application mini project at the end of the course. All assignments are to be performed in in any one of the three tools viz: **PHP based technology**, **Java based technology** or **Python based technology** with a suitable back-end.

Term Work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in PHP/Java/Python and MySQL or suitable database.

Suggested List of Assignments										
Sr. No.	Assignments	No. of Hours	COs							
1	Assignment on Operators, Data types, Variables and Constants.	4 Hrs.	CO1							
2	Assignment on Arrays, Control Structures, Looping Structures.	4 Hrs.	CO1							
3	Assignment on Conditional Statements, User Defined Functions.	4 Hrs.	CO1							
4	Assignment on String Function, Math library functions.	4 Hrs.	CO2							
5	Assignment on Graphical User Interface and validation.	4 Hrs.	CO2							
6	Assignment on State Management: Cookies, Session management.	4 Hrs.	CO2							
7	Assignment on Embedded SQL: Creating Database & Tables, Dropping Database & Tables, Adding Fields, Selecting Tables.	4 Hrs.	CO2							
8	Assignment on Mini-project Part-I: Problem definition and Analysis.	4 Hrs.	CO3							
9	Assignment on Mini-project Part-II: Design and Implementation.	4 Hrs.	CO4							
10	Assignment on Mini-project Part-III: Testing and Deployment.	4 Hrs.	CO4							
Books:										
Reference	e Books:									

1. Steve Holzner, "The Complete Reference PHP", TATA McGraw Hill.

- 2. Ivan Bayross, "Web Enabled Commercial Application Development Using HTML, JavaScript, DHTML and PHP", 4th Edition, BPB Publications. ISBN: 9788183330084.
- 3. "Web Technologies Black Book: HTML, JavaScript, PHP, Java, JSP, XML and AJAX", Kogent Learning Solutions Inc. ISBN: 9788126554560, 8126554568.
- 4. VikramWaswani, "The Complete Reference MySQL", TATA McGraw Hill.
- Luke Welling and Laura Thomson, "PHP and MySQL Web Development", Addison Wesley, 5th Edition, 2017.
- 6. Herbert Schildt, "The Complete Reference: Java2", 5th Edition, Tata McGraw-Hill, 2011, ISBN: 978-0-07-049543-2.
- 7. Jim Keogh, "The Complete Reference: J2EE", Tata McGraw-Hill, 2012, ISBN: 978-0-07-052912-0.

MC 219 : Innovation - Project based – Sc., Tech, Social, Design & Innovation (Mandatory Course – IV)

Teaching Scheme	Examination Scheme	
Lectures: 2 Hrs./Week	Term Work:	NA
	Oral :	NA
	Practical:	NA
Credits: Non Credit	Total:	NA

Course Objectives

- 1. To develop strategic thinking to solve social problems.
- 2. Understand the role of innovation and technical change in enterprise and national level economic performance.
- 3. Understand the technological, human, economic, organizational, social and other dimensions of innovation.
- 4. Understand the effective management of technological innovation requires the integration of people, processes and technology.
- 5. Recognize opportunities for the commercialization of innovation.

Course Outcomes (COs):											
After	After successful completion of the course, student will be able to										
	Course Outcome (s) Bloom's Taxonom										
		Level	Descriptor								
COL	Understand the role of innovation and technical change in enterprise	2	Understand								
	and national level economic performance										
CO2	Develop strategic thinking to solve social problems	3	Apply								
CO3	Recognize opportunities for the commercialization of innovation	6	Create								

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS												PSO3			
CO1	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	3	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	2	2	3	3	3	2	2	2	-	-	-

Course Contents

Many students, when they enter engineering, are full of enthusiasm to understand new areas, to build systems and to experiment and play with them. This enthusiasm is to be tapped and to direct it to exploration and sustained pursuit by the student, which may result in development of a working system, a prototype, or a device or material, etc. They are not required or even expected to produce research or an innovation.

Students may be encouraged to take up projects which are aimed at providing solutions to societal problems, reduce drudgery and improving efficiency in rural work, green technologies, utilization of rural and urban waste, sanitation and public health, utilizing non-conventional energy sources, technologies for the benefit of the differently abled people and technologies ready to be implemented in the Institute.

Two types of activities may be undertaken under this

(a) Exposure to social problems (which are amenable to technological solutions)

(b) Design & Innovation (to address above problems)

After this students be encouraged to undertake technology projects of social relevance.