SANJIVANI RURAL EDUCATION SOCIETY'S SANJIVANI COLLEGE OF ENGINEERING KOPARGAON

(An Autonomous Institute Affiliated to SPPU Pune)

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE CURRICULUM - 2019 PATTERN

SECOND YEAR B. TECH.

Sanjivani College of Engineering, Kopargaon (An Autonomous Institute affiliated to SPPU, Pune)

DECLARATION

We, the Board of Studies **INFORMATION TECHNOLOGY**, hereby declare that, We have designed the Curriculum of **S** .Y. B Tech. of Pattern 2019 w.e.f. A.Y 2020-2021 as per the guidelines . So, we are pleased to submit and publish this FINAL copy of the curriculum for the information to all the concerned stakeholders.

Submitted by

BoS Chairman

Department of Information Technology SRES College of Engineering Kopargeon MS - 423603 Approved by

Dean Academics

Approved Approved

Director

PROFILE

Sanjivani College of Engineering (An Autonomous Institute), Kopargaon is one among the premier technical institutes in Maharashtra state in the un-aided sector established in 1983. Department of Information Technology is established in the year 2001 with an intake of 60 students. Department is acquainted with 8 well equipped laboratories with latest hardware and Software, 3 class rooms and one tutorial Hall equipped with modern teaching aids and computing facilities. UG Program in IT department is accredited by NBA New Delhi for Second time in Academic Year 2019-2020 for three Years.

There are 15 experienced & well qualified teaching staff members & 6 supporting staff members who carry out the regular academic activities as well as curricular & extracurricular activities as per the plans prepared in advance at the beginning of every semester.

In the academic year 2019-2020 strength of students in department is 275. Apart from regular academic activities students take part in curricular & co curricular activities conducted by department organization ITERA as well as other department's organization & professional bodies in the institute like CSI, ISTE, and IEEE etc. Apart from the central library the department has its own library with a very good collection of reference book, text books and CSI magazines, IEEE magazines.

Along with regular academics Department of IT has started value added courses like SAP Certification Training Programme in collaboration with Primus Techsystems Pvt. Ltd. Pune and REDHAT Academy Centre, MBPS Infotech Pune.

IT Department has started capsule courses to improve technical skill sets of students. Department is having very good placements in various renowned and multi-national companies like TCS, Infosys, Persistent, Cognizant Wipro and many more.

Also to form well balanced Industry Interaction connect and bridge the gap between Industry and institution Department of IT has organized different events like Sanjivani Though Leader, Sanjivani I-connect and Sanjivani My Story Board.

Various personal and professional skill development programs like Communication and Soft Skill programs, Aptitude Training, Technical Skill enhancement programs, Foreign Language Certification Courses, Personal and Spiritual Development Programs, Entrepreneurship Development Activities, and Preparation courses for competitive Examinations (Gate/GRE/CAT etc.) are made available in campus. Students are given opportunities to develop and nurture their leadership qualities through Student Associations, Student Council, Professional Body activities and working as volunteers in various events organized at Department/ College level.

VISION AND MISSION

Vision of Institute

To develop world class professionals through quality education.

Mission of Institute

To create Academic Excellence in the field of Engineering and Management through Education,
Training and Research to improve quality of life of people.

Vision of Department

To develop world class IT professionals through quality education.

Mission of Department

To create Academic Excellence in the field of Information Technology through Education, Industry Interaction, Training and Innovation to improve quality of life of people.

We are committed to develop industry competent technocrats with life-long learning capabilities and moral values.

PROGRAM EDUCATIONAL OBJECTIVES

PEO 1:

Graduates of IT program should possess knowledge of fundamental concepts in mathematics, science, engineering and technology as well as skills in the field of Information Technology for providing solution to complex engineering problem of any domain by analyzing, designing and implementing.

PEO 2:

Graduates of IT program should possess better communication, presentation, time management and teamwork skills leading to responsible and competent research, entrepreneurship and professionals, will be able to address challenges in the field of Information Technology at global level.

PEO 3:

Graduates of IT program should have commitment to societal contributions through communities and life-long learning.

PROGRAM OUTCOMES

PO1:Engineering knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3:Design/development of solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4:Conduct investigations of complex problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7:Environment and sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9:Individual and team work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10:Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12:Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1:

Attain the ability to provide software solutions by applying knowledge of Data Structures & Algorithms, Databases, Web Technology, System Software, Soft Computing and Cloud Computing.

PSO2:

Apply the knowledge of Computer Hardware & Networking, Cyber Security, Artificial Intelligence and Internet of Things to effectively integrate IT based solutions.

PSO3:

Apply the knowledge of best practices and standards of Software Engineering for Project Management.

	LIST OF ABBREVIATIONS											
Abbreviation	Full Form	Abbreviation	Full Form									
ES	Engineering Science	HSMC	Humanity Science									
PC	Professional Core	CA	Continuous Assessment									
PE	Professional Elective	OR	End Semester Oral Examination									
OE	Open Elective	PR	End Semester Practical Examination									
ISE	In-Semester Evaluation	TW	Continuous Term work Evaluation									
ESE	End-Semester Evaluation	BSC	Basic Science Course									
PRJ	Project	MC	Mandatory Course									

SEMESTER-I

Co	urse		T	eachi	ng		Evaluation Scheme - Marks						
Cat.	Code	Course Title	Ho	Schem urs/ W	eek	Credits		Theory		OR	PR	TW	Total
			L	T	P		ISE	ESE	CA				
PRJ	IT201	First Year Internship	-	-	-	2	-	-	-	50	-	-	50
BSC	BS202	Vector Calculus And Differential Equation	4	-	-	4	30	50	20	-	-	-	100
PC	IT203	Digital Electronics & Computer Organization	4	-	-	4	30	50	20	-	-	-	100
PC	IT204	Fundamentals of Data Structures	3	-	-	3	30	50	20	-	-	-	100
PC	IT205	Object Oriented Programming	3	-	-	3	30	50	20	-	-	-	100
HSMC	HS206	Universal Human Values And Ethics	3	-	-	3	30	50	20	-	-	-	100
PC	IT207	Digital Electronics Laboratory	-	-	2	1	-	-	-	25	25	25	75
PC	IT208	Fundamental of Data Structure Laboratory	-	-	2	1	-	-	-	25	25	25	75
PC	IT209	Object Oriented Programming Laboratory	-	-	2	1	-	-	-	25	25	25	75
MC	MC210	Mandatory Course- III	2	-	-	NON Credit	-	-	-	-	-	-	-
		Total	19	1	6	22	150	250	100	125	75	75	775

	MC210	Mandatory Course-III	Constitution of India – Basic features and fundamental principles
--	-------	----------------------	---

SEMESTER-II

Co	ourse		T	eachi	ng			Eva	luatio	n Sche	me - I	Marks	
Cat.	Code	Course Title	Но	Scheme ours/ Week		Credits	Theory			OR	PR	TW	Total
			L	T	P		ISE	ESE	CA				
PC	IT211	Discrete Mathematics	3	1	-	4	30	50	20	-	-	-	100
PC	IT212	Database Management System	3	-	-	3	30	50	20	-	-	-	100
PC	IT213	Microprocessor & Microcontroller	4	-	-	4	30	50	20	-	-	-	100
PC	IT214	Data Structures& Files	4	-	-	4	30	50	20	-	-	-	100
PC	IT215	Database Management System Laboratory	-	-	2	1	-	-	-	50	-	25	75
PC	IT216	Microprocessor & Microcontroller Laboratory	-	ı	2	1	-	-	-	-	50	25	75
PC	IT217	Data Structures & Files Laboratory	-	-	2	1	-	-	-	-	50	25	75
PRJ	IT218	Seminar	2	-	-	2	-	-	-	50	-	-	50
PRJ	IT219	Mini Project	-	-	4	2	-	-	-	-	-	50	50
MC	MC220	Mandatory Course- IV	2	1	-	NON Credit	-		-	-	-	-	-
		Total	18	1	10	22	120	200	80	100	100	125	725

MC220 Mandatory Course-IV Innovation - Project based – Sc., Tech, Social, Design & In

Total Credits: 44

Total Marks: 1500

S.Y. B. Tech Information Technology Semester I

IT 201 : First Year Internship							
Teaching Scheme	Examination Scheme						
Lectures: NA	Oral Exam: 50 Marks						
	Total: 50 Marks						
Credits: 2							

GUIDELINES FOR INTERNSHIP

There are three different options available for the students to earn internship credit.

- 1. **Online Course:** Students shall register for an online course on Programming in C of 8 weeks duration offered via SWAYAM/NPTEL. Credits shall be awarded only on successful completion of the course under the authorized mentor and passing the examination of the said course.
- 2. **RedHat Certification:** Students shall register for level 1 RedHat certification course in RedHat Academy Centre of the department. Students shall attend all the classes of the course as the schedule given by the RedHat Academy. Credits shall be awarded to the students on passing the examination conducted by RedHat.
- 3. **Internship at Centre for IoT Consultancy:** Students shall register for internship of 4 week duration at the Centre for IoT Consultancy in the department of Information Technology. Students will have to attend the training programme as per the schedule given by the Centre for IoT Consultancy.

The contents for the IoT training are as follows: Introduction to Internet of Things, study and identification of different Sensors, study and identification of different electronics components including breadboard. Introduction to Arduino device, writing programs using Arduino IDE, interfacing of input and output devices with Arduino, WiFi module, Use of IoT mobile Apps.

Students shall be given hands on practice during training and shall have to design and develop following projects.

- 1. Automatic street/corridor/passage/stair case light controller.
- 2. Room temperature indicator with relay switch.
- 3. Object detector using ultrasonic sensor.
- 4. Door lock using RFID.
- 5. Water tank level indicator with relay.
- 6. Heartbeat indicator.

Students shall be awarded internship credits only on successful implementation and submission of any 4 projects mentioned above at the Centre for IoT Consultancy.

BS 202 : VECTOR CALCULUS AND DIFFERENTIAL EQUATION						
Teaching Scheme	Examination Scheme					
Lectures: 4 Hrs./Week	Continuous	20 Marks				
	Assessment:					
	In-Sem Exam:	30 Marks				
	End-Sem Exam:	50 Marks				
Credits: 4	Total:	100 Marks				

Prerequisite Course: Basic of Mathematics

Course Objectives

- 1. To describe and recall basics of calculus.
- 2. To understand the concept and problem solutions of a curriculum.
- 3. To apply core concept for any applied problems in engineering.
- 4. To analyze the problem of which kind and use particular method for finding solution in engineering field.
- 5. To justify the statements for using specific method to applications problems in engineering field.
- 6. To organize the suitable problems in engineering field and present thoughts related to the problems.

Course Outcomes (COs):

	Course Outcome (s)	Bloom'	s Taxonomy
		Level	Descriptor
CO1	Know and recall core knowledge of calculus	1	Remember
CO2	Understand the concept and use in solving engineering problems.	2	Understand
CO3	Apply core concept for any applied problems in engineering.	3	Apply
CO4	Analyse the problem of which kind and use particular method for finding solution in engineering field.	4	Analyse
CO5	Justify the statements for using specific method to applications problems in engineering field.	5	Evaluate
CO6	Organize the suitable problems in engineering field and present thoughts related to the problems.	6	Create

Mapping of	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	_	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	_	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	_	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	_	-	_	-
CO6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-

	Course Contents				
Unit-I	VECTOR DIFFERENTIATION	No.of Hours	COs		
	Scalar and vector point function, Derivative of a vector point function, Gradient of scalar function Ø, Directional derivative, Divergence and Curl of vector point function, Solenoidal and irrotational vector field and scalar potential, vector identities.	08	CO1 CO3 CO5		
Unit-II	VECTOR INTEGRATION	No.of Hours	COs		
	Line integral, Greens theorem, Work done, Conservative field, surface integral, Stokes theorem, volume integral, Gauss Divergence theorem.	08	CO3 CO4 CO5		
Unit-III	nit-III HIGHER ORDER DIFFERENTIAL EQUATION				
	Homogeneous and non homogeneous linear differential equation of n th order and its solution, Method of variation of parameter, operator method for particular integral, solution of certain types of linear differential equation: Cauchy's and Legendre's differential equation.		CO1 CO2 CO3		
Unit-IV	SERIES SOLUTION OF DIFFERENTIAL EQUATION	No.of Hours	COs		
	Linear differential equations with variable coefficients, solution about ordinary point, about singular point (Frobenius method) series solution of Bessel's equation, series solution of Legendre's equation.	08	CO3 CO4 CO6		
Unit-V	PARTIAL DIFFERENTIAL EQUATION	No.of Hours	COs		
	Formation of partial differential equation, Partial differential equation of order one (linear and nonlinear), Charpit method, PDE of higher order with constant coefficient.	08	CO2 CO3 CO5		
Unit-VI	APPLICATIOS OF PARTIAL DIFFERENTIAL EQUATION	No.of Hours	COs		
	One dimensional heat equation, Wave equation, Two dimensional heat equation (Laplace equation), Telephone equation, Radio equations.	08	CO1 CO3 CO5		

Text Books:

- 1. B. S. Grewal, "Higher Engineering Mathematics", 42/e, Khanna Publishers, 2012, ISBN-13: 978-8174091154.
- 2. N. P. Bali and Manish Goyal, "A Text Book of Engineering, Mathematics", 8/e, Lakshmi Publications, 2012. ISBN: 9788131808320.
- 3. H. K. Das, "Engineering Mathematics", S Chand, 2006, ISBN-8121905209.

- 1. K.A. Stroud & D. S. Booth, "Advanced Engineering Mathematics", Industrial Press, 5/e, 2011, ISBN-9780831134495.
- 2. P. C. Matthews, "Vector Calculus", Springer, 2/e, 2012, ISBN-9783540761808.
- 3. Robert C. Wrede, "Introduction to vector and tensor analysis", Dover, 2013.
- 4. W. E. Boyce, R. C. Diprima, "Elementary differential equation and boundary value problems", John Wiley & Sons, 2012, ISBN-978-0-470-45831-0833.
- 5. R. K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics", Narosa Publishing House, 2014. ISBN-13: 978-1842653418.
- 6. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley, 9/e, 2013.

IT203: Digital Electronics & Computer Organization						
Teaching Scheme	Examination Scheme					
Lectures: 4 Hrs./Week	Continuous	20 Marks				
	Assessment:					
	In-Sem Exam:	30 Marks				
	End-Sem Exam:	50 Marks				
Credits: 4	Total:	100 Marks				

Prerequisite Course: Basic Electronics Engineering, Fundamental of Programming Languages

Course Objectives

- 1. To learn basics of Digital Systems, VHDL and Processor Organization.
- **2.** To understand memory and I/O organization.
- 3. To design and implement combinational and sequential logic circuits.
- **4.** To analyze performance of Computer Systems, Cache.
- **5.** To compare various parallel organizations.
- **6.** To develop VHDL programs.

Course Outcomes (COs):

	Course Outcome (s)	Bloom'	s Taxonomy
		Level	Descriptor
CO1	Learn basics of Digital Systems, VHDL and Processor Organization.	1	Remember
CO2	Understand memory and I/O organization.	2	Understand
CO3	Design and Implement combinational and sequential logic circuits.	3	Apply
CO4	Analyse performance of Computer Systems, Cache	4	Analyse
CO5	Compare various parallel organizations.	4	Analyse
CO6	Develop VHDL programs.	6	Create

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	_	1	1	1	_	-	_	1	3	-	3	-	3	-
CO2	2	-	-	1	-	-	-	-	-	2	-	2	-	3	-
CO3	1	1	3	3	2	3	1	1	3	_	-	1	-	3	-
CO4	-	3	-	3	-	-	2	-	-	1	-	2	-	3	-
CO5	-	2	-	3	-	-	-	-	-	3	2	2	-	3	-
CO6	2	-	3	1	3	2	-	1	3	-	-	1	-	3	-

	Course Contents		
Unit-I	COMBINATIONAL LOGIC CIRCUITS	No. of Hours	COs
	Number Systems, Boolean Algebra & Logic Minimization, Design of code converters, Design of adders, Multiplexers, Demultiplexer/ Decoders, Encoder.	06	CO1
Unit-II	SEQUENTIAL LOGIC CIRCUITS	No.of Hours	COs
	Introduction to sequential circuits, Flip- Flops, Design of Counters, Modulo counters. Registers, Design of sequence Generator, Pseudo Random Binary Sequence Generator Introduction to SPLD, CPLD, FPGA	06	CO1 CO3
Unit-III	INTRODUCTION TO VHDL PROGRAMMING	No. of Hours	COs
	Design flow: Basic Concept of Simulation and Synthesis Introduction to VHDL, Data Objects, Data Types, Attributes, Models of Design, Concurrent Statements Vs Sequential Statements, Design of Digital Circuits	06	CO1 CO6
Unit-IV	PROCESSOR ORGANIZATION	No. of Hours	COs
	Computer Evolution, Computer Performance, RISC Vs CISC, Building Data Paths, Pipelined Datapath and Control Data Hazards: Forwarding versus Stalling, Control Hazards	06	CO1 CO4
Unit-V	MEMORY AND I/O ORGANIZATION	No. of Hours	COs
	Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory, A Common Framework for Memory Hierarchies, Virtual Machines, Parallelism and Memory Hierarchies: Cache Coherence, Connecting Processors, Memory, and I/O Devices. Interfacing I/O Devices to the Processor, Memory, and Operating System	06	CO2
Unit-VI	PARALLEL ORGANIZATIONS	No. of Hours	COs
	Introduction, The Difficulty of Creating Parallel Processing Programs, Shared Memory Multiprocessors, Clusters and Other Message-Passing Multiprocessors, Hardware Multithreading, SISD, MIMD, SIMD, SPMD, and Vector, Introduction to Graphics Processing Units, Introduction to Multiprocessor Network Topologies, Multiprocessor Benchmarks	06	CO5

Text Books:

- 1. M Morris Mano, "Digital Design", Prentice Hall, 3rd Edition, ISBN: 0130621218.
- 2. Mano, M. Morris , "Digital Design: with an Introduction to the Verilog HDL, VHDL, System Verilog", 6th Edition, Pearson
- 3. D. Patterson, J. Hennessy, "Computer Organization and Design: The Hardware Software Interface", 4th Edition, 2013, ISBN 978-0-12-374750-1
- 4. W. Stallings, "Computer Organization and Architecture: Designing for Performance", Prentice Hall of India, 8th Edition, 2010, ISBN 13: 978-0-13-607373-4

- 1. Flyod, "Digital Principles", Pearson EducationISBN:978-81-7758-643-6.
- 2. John Yarbrough, "Digital Logic applications and Design", , Thomson Publication ISBN: 978-0314066756
- 3. Malvino, D. Leach, "Digital Principles and Applications", 5th edition, Tata McGraw Hill
- 4. R.P. Jain, "Modern Digital Electronics",3rd Edition, Tata McGraw-Hill, ISBN: 0-07-049492-4
- 5. Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design", McGraw- Hill, ISBN: 978–0–07–352953–0
- 6. J. Bhaskar, "VHDL Primer", Pearson Education, 3rd Edition, ISBN: 0071226249
- 7. C. Hamacher, V. Zvonko, S. Zaky, "Computer Organization", McGraw Hill,5th edition, 2002, ISBN: 007-120411-3
- 8. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", Wiley, 2014, ISBN: 978-81-265-2284-2
- 9. A. S. Tanenbaum, "Structured Computer Organization", Prentice Hall of India, 4th Edition, 1991, ISBN: 81–203–1553–7
- 10. J. Hays, "Computer Architecture and Organization", McGraw-Hill, 2nd Edition, 1988 ISBN 0-07-100479-3

IT204: Fundamentals of Data Structures						
Teaching Scheme	Examination Scheme					
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks				
	In-Sem Exam:	30 Marks				
	End-Sem Exam:	50 Marks				
Credits: 3	Total:	100 Marks				
Prerequisite Course: Computer Fundamentals & Programming CFP-105						

Course Objectives

- 1. To learn different searching & sorting techniques.
- **2.** To learn linear data structure and its application.
- **3.** To learn dynamic memory allocation concepts.
- **4.** To learn fundamentals of data structure and its applications.
- 5. To learn algorithm design technique with time and space complexity
- 6. To learn concept of linked organization for problem solving and programming

Course Outcomes (COs):

	Course Outcome (s)	Bloom	's Taxonomy
		Level	Descriptor
CO1	Describe appropriate searching and/or sorting techniques in the application development	2	Understand
CO2	Use appropriate linear data structure for solving problems and programming	3	Apply
CO3	Use dynamic memory allocation concepts in various application developments.	3	Apply
CO4	Apply appropriate constructs of C language, coding standards for application development	3	Apply
CO5	Examine basic analysis of algorithms with respect to time and space complexity	4	Analyse
CO6	Select appropriate data structures and algorithmic foundations for problem solving and programming	5	Evaluate

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	2	-	-	1	1	1	2	3	-	-
CO2	1	1	3	-	3	-	-	-	1	1	1	2	3	-	-
CO3	1	3	1	1	-	3	-	-	1	1	1	2	3	-	-
CO4	2	3	1	1	1	2	-	-	1	_	1	2	3	_	_
CO5	2	3	1	3	1	2	1	-		-	1	2	3	-	-
CO6	2	3	1	3	-	3	-	-	1	-	1	2	3	-	1

	Course Contents		
Unit-I	POINTERS	No. of Hours	COs
	Multidimensional arrays, Array of structures, storage representation & address calculation of Multidimensional Array, Introduction to Pointers, Dynamic Memory Allocation: malloc(), calloc(), realloc(), free(), pointer to pointer, pointer to single and multidimensional arrays, array of pointers, pointers to string & C string functions using pointers, Structure using pointers, Pointers to functions.	06	CO3
Unit-II	FUNDAMENTALS OF DATA STRUCTURE	No.of Hours	COs
	Fundamentals: Data structure, Abstract Data Types, realization of ADT in 'C'. Types of data structure: Primitive non-primitive, linear Non-linear, static dynamic, persistent ephemeral data structures. Performance Analysis of Algorithm: Space Complexity, Time Complexity.	05	CO4 CO5
Unit-III	SEARCHING & SORTING	No. of Hours	COs
	Searching Algorithms: Linear Search, Binary search their comparison. Internal and external sorting, Sorting Algorithms: Bubble Sort, Selection Sort, Quick Sort, Insertion Sort, and Merge Sort. Time complexity of all sorting algorithms and their comparison.	07	CO1 CO2 CO5
Unit-IV	LINKED ORGANIZATION		COs
	Linked organization, Types of Linked List: Singly Linked List, Doubly Linked List, Circular Linked List. Linked list as an ADT. Polynomial representation using linked lists.	06	CO3 CO6
Unit-V	STACK	No. of Hours	COs
	Concept of Sequential organization. Introduction to Stack, Implementation of Stack using sequential organization. Implementation of Stack using Linked organization, Concept of implicit and explicit stack. Applications: Infix to postfix conversion, infix to prefix conversion, Evaluation of prefix and postfix expression, decimal to binary conversion, well-formedness of parenthesis.	06	CO2 CO3 CO6
Unit-VI	QUEUE	No. of Hours	COs
Text Bool	Concept of queues as ADT, Implementation of queue using sequential & linked organization. Concept of circular queue and its implementation, Concept of double ended queue and its implementation, Concept of priority queue. Applications of queues.	06	CO2 CO6

- **Text Books:**
 - 1. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed "Fundamentals of Data Structures in C", Universities Press, 2008.
 - 2. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C, Second Edition", Cengage Learning.

- 1. Robert Sedgewick and Kevin Wayne, "Algorithms" 4th Edition; Pearson Education, ISBN-13: 978-0321573513.
- 2. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C", Galgotia Book
- 3. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- 4. Aaron Tanenbaum, "Data Structures using C", Pearson Education.
- 5. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 6. Yashavant Kanetkar, "Understanding Pointers in C", BPB Publication.
- 7. Yashavant Kanetkar, "Let Us C", BPB Publication.

IT 205: Object Oriented Programming						
Teaching Scheme	Examination Scheme					
Lectures: 3 Hrs./Week Continuous Assessment: 20 M						
	In-Sem Exam:	30 Marks				
	End-Sem Exam:	50 Marks				
Credits: 3	Total:	100 Marks				
Prerequisite Course: Computer Fundamentals & Programming CFP-105						

Course Objectives

- 1. To understand the basics of Object Oriented Programming with C++.
- 2. To explain Object Oriented Programming principles and techniques.
- 3. To design program using classes and objects of Object Oriented Programming.
- **4.** To build C++ classes using appropriate Overloading and Inheritance.
- 5. To apply Memory allocation of Object Oriented Programming.
- 6. To apply Templates of Object Oriented Programming

Course Outcomes (COs):

	Course Outcome (s)	Bloom's T	axonomy
		Level	Descriptor
COL	Understand the basics of Object Oriented Programming with	2	Understand
CO1	C++.		
CO2	Explain the principles and techniques of OOP	5	Evaluate
CO3	Write program using classes and objects of Object Oriented	3	Apply
COS	Programming		
CO4	Build C++ classes using appropriate Overloading and Inheritance	6	Create
CO5	Apply memory allocation of OOP	3	Apply
CO6	Apply templates of OOP.	3	Apply

Mapping of	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
				_					_						
CO1	3	1		2	1		2	1	3	1	2	3	3		
CO2	3	2	2	2	1		2	1	3	1	1	3	3		3
CO3		3		1	2	1	1	2	2	1	1	2			3
CO4		3	2	1	2		1	2	1	1		2			3
CO5		3		2	1		1	1	1		1	1	2		
CO6		3		2	1		1	1		1		1	2		

	Course Contents		
Unit-I	INTRODUCTION TO C++	No. Of Hours	COs
	Macros, Enumerations, Strings, Signatures of functions, passing variables to functions- Reference vs. pointers, Reference vs. value, Keyword const, Default arguments C++ Syntax and Semantics, the program development process, Numeric Types, expressions and Output in C++	06	CO1
Unit-II	OBJECT-ORIENTED PROGRAMMING BASICS	No.of Hours	COs
	Basic class design principles - collaborations and responsibilities; separating interface and implementation; decoupling. Object-oriented principles and techniques - using a polymorphic class hierarchy; abstract base classes for common interface. Major object-oriented idioms and design patterns - providing extensibility and code stability simultaneously.	06	CO2
Unit-III	CLASSES AND OBJECTS	No. Of Hours	COs
	Structures, Pointers to structures, Classes- private and public members, Constructors – Types of constructors, Destructors, The this pointer, Friend functions, Friend classes Conditions, Logical Expressions and Selection Control Structures, Loops, functions, structured types, data abstraction and classes, Arrays, Default parameters, references, bidirectional function parameters	06	CO3
Unit-IV	OVERLOADING AND INHERITANCE	No. Of Hours	COs
	Pointers to overloaded functions, Overloading constructors, Operator overloading, overloading binary operators, Overloading unary operators, overloading using friend operators, Inheritance, types of inheritance, Constructors, destructors and inheritance, Pointers to derived classes, Virtual functions, Friend functions and inheritance, Polymorphism	6	CO4
Unit-V	MEMORY ALLOCATION	No. Of Hours	COs
	Dynamic allocation and memory management, destructors, structured exception handling, implementing data structures in C++, intro to the STL, Basic data structures such as linked lists, stacks, and queues are covered in terms of their usage and implementation using C++.	6	CO5
Unit-VI	TEMPLATE	No. Of Hours	COs
	Templates, C++ Standard library, design patterns, programming for		CO6
	efficiency and testability, performance measurement, and debugging, standard library string and vector, Stream	6	
Text Bool	standard library string and vector, Stream ks:		
	standard library string and vector, Stream ks: agurusamy, Object Oriented Programming with C++, McGraw Hill Edition		

- Wesley.
- 2. Daniel Du_y, "Introduction to C++ for Financial Engineers : An Object-oriented Approach", 2006.
- 3. Steve Oualline, "Practical C++ Programming", 1995.
- 4. Andrew Haigh, "Object Oriented Analysis & Design", Tata McGraw Hill Edition.
- 5. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Pattern-Elements of Reusable Object Oriented Programming", Pearson.
- 6. Herbert Schildt, "Teach Yourself C++", 1992.
- 7. Jesse Liberty, "Teach Yourself C++ in 24 hours", 1999.
- 8. Schildt. H., "C++ from the Ground up", 2nd Edition, Osborne McGraw-Hill, 1998.
- 9. Shtern. V,"Core C++ A Software Engineering Approach", Prentice Hall Publisher, 2000.
- 10. Mary Delemater, Joel Murach, "Murach'sC++ Programming", Pub 2018 ISBN: 9781-943872-27-5
- 11. Bjarne Stroustrup, "A Tour of C++ (C++ In-Depth)", 1st Edition, ISBN-13: 978-0321958310.
- 12. Stanley Lippman, "C++ Primer", 5th Edition ISBN-13: 978-0321714114.
- 13. Bjarne Stroustrup, "The C++ Programming Language", 4th Edition ISBN-13: 978-0321563842.
- 14. Alice E. Fischer and David W. Eggert, "Applied C and C++ Programming", University of New Haven, and Michael J. Fischer, Yale University, August 2018.
- 15. Dale. N and Weems. C., "Programming and Solving with C++", 4th Edition Jones and Bartlett Publishers, 2004.

HS 206: UNIVERSAL HUMAN VALUES AND PROFESSIONAL ETHICS						
Teaching Scheme	Examination Scheme					
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks				
	In-Sem Exam:	30 Marks				
	End-Sem Exam:	50 Marks				
Credits: 3	Total:	100 Marks				
	•					

Course Objectives

- 1. To make the students aware about the concept and need of value education.
- 2. To help the students appreciate the essential complementarity between values and skills to ensure sustained happiness and prosperity.
- **3.** To facilitate the development of a holistic perspective among the students towards life and profession.
- **4.** To facilitate the understanding of harmony at various levels staring from self and going towards family, society and nature.
- **5.** To make the students aware about the correlation between engineering ethics and social experimentation in various situations.
- **6.** To highlight the importance of professional ethics in the wake of global realities.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	s Taxonomy
		Level	Descriptor
CO1	Understand the concept of self exploration as the process of value education.	2	Understand
CO2	Understand the human being as the coexistence of self and body.	2	Understand
CO3	Apply the holistic approach for fulfilling human aspirations for the humans to live in harmony at various levels.	3	Apply
CO4	Analyze the universal human order in correlation with professional ethics.	4	Analyze
CO5	Apply ethical practices in engineering profession.	3	Apply
CO6	Evaluate the importance of various ethical practices in the wake of global realities.	5	Evaluate

Mapping of	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	-	3	_	1	-	2	-	-	-
CO2	-	-	-	-	-	2	-	3	_	1	-	2	-	-	-
CO3	-	-	-	-	-	3	-	3	_	1	-	2	-	-	-
CO4	-	-	-	-	-	3	-	3	_	1	-	2	-	-	-
CO5	-	-	-	-	-	3	-	3	_	1	-	2	-	-	-
CO6	-	-	-	-	-	3	-	3	-	1	-	2	-	-	-

	Course Contents		
Unit-I	INTRODUCTION TO VALUE EDUCATION	No.of Hours	COs
	Values, Morals and Ethics; Concept and need of value education; Self- exploration as the process for value education; Guidelines for value education; Basic human aspirations and their fulfillment	06	CO1
Unit-II	HARMONY IN HUMAN BEING	No.of Hours	COs
	Human being as the coexistence of self and the body; Discrimination between the needs of the self and the body; The body as an instrument; Harmony in the self; Harmony of the self with the body	06	CO2
Unit-III	HARMONY IN THE FAMILY, SOCIETY AND NATURE	No.of Hours	COs
	Harmony in the family- The basic unit of human interaction; Values in the human to human relationship; Harmony in the society; Vision for the universal human order; Harmony in the nature; Realizing existence as coexistence at all levels	06	СОЗ
Unit-IV	PROFESSIONAL ETHICS	No.of Hours	COs
	Natural acceptance of human values; Definitiveness of ethical human conduct; Humanistic education and universal human order; Competence in professional ethics; Transition towards value-based life and profession	06	CO4
Unit-V	ENGINEERING ETHICS AND SOCIAL EXPERIMENTATION	No.of Hours	COs
	Need of engineering ethics; Senses of engineering ethics; Variety of moral issues; Moral autonomy; Utilitarianism; Engineering as experimentation Engineers as responsible experimenters; Codes of ethics	06	CO5
Unit-VI	GLOBAL ISSUES	No.of Hours	COs
Toyt Dool	Globalization and multi-national corporations; Cross-cultural issues; Business ethics; Environmental ethics; Computer ethics; Bio-ethics; Ethics in research; Intellectual property rights and plagiarism	06	CO6

Text Books:

- 1. R. R. Gaur, R. Sangal, G. P. Bagaria, "A Foundation Course in Human Values and Professional Ethics", Excel Books Pvt. Ltd.
- 2. R. S. Naagarazan, "A Textbook on Professional Ethics and Human Values", New Age International (P) Ltd. Publishers

- 1. B. P. Banerjee, "Foundations of Ethics and Management", Excel Books Pvt. Ltd.
- 2. P. L. Dhar, R. R. Gaur, "Science and Humanism", Commonwealth Publishers
- 3. M. K. Gandhi, "The Story of my Experiments with Truth", Discovery Publisher
- 4. http://uhv.org.in/

Considering the specific nature of this course, the methodology is explorational and thus universally adaptable. In order to connect the content of this course with practice, minimum 6 group activities should be conducted with active involvement of the students. The teacher's assessment should be be strictly based on the participation of the students in these activities

IT207 : Digital Electronics Laboratory									
Teaching Scheme	Examination Sch	eme							
Lectures: 2 Hrs./Week	Term 25	Marks							
	Work:								
	Oral: 25	Marks							
	Practical: 25	Marks							
Credits: 1	Total: 75	Marks							

Prerequisite Course: Basic Electronics Engineering

Course Objectives

- 1. To apply knowledge and concepts of digital system design techniques as hands-on experiments.
- **2.** To Use logic function representation for simplification with K-Maps and analyze as well as design Combinational logic circuits using SSI & MSI chips.
- **3.** Analyze Sequential circuits like Flip-Flops & design the applications like Asynchronous and Synchronous Counters.
- 4. Design Sequential Logic circuits like MOD counters using synchronous/asynchronous counters.
- **5.** Understand and implement the design Steps with different modelling styles for any digital circuits with VHDL Programming.
- **6.** Construct digital logic circuits and analyze their behavior through simulation software like Digital Works 3.0.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonom		
	Course Outcome (s)	Level	Descriptor	
CO1	Apply knowledge and concepts of digital system design techniques as hands-on experiments.	3	Apply	
CO2	Design Combinational logic circuits using SSI & MSI chips using logic function representation for simplification with K-Maps.	6	Create	
СОЗ	Analyze Sequential circuits like Flip-Flops & design the applications like Asynchronous and Synchronous Counters.	4	Analyse	
CO4	Design Sequential Logic circuits like MOD counters using synchronous/asynchronous counters.	6	Create	
CO5	Implement design steps with different modelling styles for any digital circuits using VHDL Programming.	3	Apply	
CO6	Construct digital logic circuits and analyze their behavior through simulation software like Digital Works 3.0.	6	Create	

Mapping of Course (Outcomes to Program	Outcomes (POs) & Program S	Specific (Outcomes (PSOs)):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	1	-	-	2	-	-	2	1	-	1	-	3	-
CO2	-	-	3	2	2	3	2	-	3	1	2	1	-	3	_
CO3	-	3	1	-	_	2	-	-	3	1	-	1	-	3	-
CO4	-	-	3	2	2	3	-	-	3	1	2	1	-	3	-
CO5	3	-	2	-	3	2	-	-	3	1	-	2	-	3	-
CO6	_	2	3	-	3	2	-	2	3	2	-	2	-	3	-

Guidelines: This Digital Laboratory course has Digital Electronics & Logic Design as a core subject. The problem statements should be framed based on Group A, B, C, D mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have two hours to complete that. The practical examination will comprise of implementation and related theory. All assignments From Group A & Group B are to be performed on Digital Trainer Kit and from Group C are to be performed on Xilinx software.

Term work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted on Digital Trainer Kit, Latest version of Open Source Operating Systems and tools.

Suggested List of Assignments								
Group A	COMBINATIONAL LOGIC DESIGN	No. of Hours	COs					
1	Assignment on Code Conversion using Gates.	2	CO1 CO2					
2	Assignment on Adder.	2	CO1 CO2					
3	Assignment on Multiplexer & Decoder.	2	CO1 CO2					
Group B	SEQUENTIAL LOGIC DESIGN	No. of Hours	COs					
4	Assignment on Up and Down Asynchronous/Synchronous Counters.	2	CO1 CO3					
5	Assignment on Module 'n' Counter.	2	CO1 CO4					
Group C	VHDL PROGRAMMING (Implement any two from this group)	No. of Hours	COs					
7	Simulation using Behavioral Modeling.	2	CO1 CO5					
8	Simulation using Data Flow & Structural Modeling.	2	CO1 CO5					
9	Simulation of Counter/Shift Registers. (Use any modeling Style)	2	CO1 CO5					
Group D	DIGITAL SIMULATION TOOLS	No. of Hours	COs					
10	Design, construct digital logic circuits and analyze their behavior through simulation of any one assignment from either Group A or Group B with simulation software like Digital Works 3.0	2	CO1 CO6					

Text Books:

- 1. R.P. Jain, "Modern Digital Electronics", 3rdEdition, Tata McGraw-Hill, ISBN: 0-07-049492-4.
- 2. J. Bhaskar, "VHDL Primer", Pearson Education, 3rdEdition, ISBN: 0071226249.

- 1. Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design", McGraw-Hill, ISBN: 978-0-07-352953-0.
- 2. John Yarbrough, "Digital Logic applications and Design", Thomson Publication, ISBN: 978-0314066756.

IT208: Fundamental of Data Structure Laboratory								
Teaching Scheme	Examination Scheme							
Lectures: 2 Hrs./Week	Term Work:	25 Marks						
	Oral:	25 Marks						
	Practical:	25 Marks						
Credits: 1	Total:	75 Marks						

Prerequisite Course:Computer Fundamentals and Programming

Course Objectives

- 1. To learn multidimensional array and pointers in depth.
- 2. To learn algorithm development in data structure
- 3. To learn different searching techniques.
- 4. To learn different sorting techniques.
- 5. To learn linked organization.
- 6. To learn problem solving using stack and queue.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Apply knowledge of pointers in application development.	3	Apply		
CO2	Develop Program by applyconstructs of C language, coding standard for applicationdevelopment.	6	Create		
СОЗ	Select appropriate algorithm design technique to solve searching problem.	5	Evaluate		
CO4	Apply appropriate sorting and searching techniques in the application development.	3	Apply		
CO5	Apply appropriate data structures for problem solving & programming using sequential and linked organization.	3	Apply		
CO6	Analyze the proper algorithmic foundation for solving stack and queue problems.	4	Analyze		

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	-	-	-	-	1	-	2	2	3	-	-
CO2	1	2	3	2	1	1	-	-	2	-	1	1	3	1	-
CO3	2	2	1	3	2	-	-	-	1	1	2	1	3	1	-
CO4	3	3	2	1	2	1	-	-	1	-	1	1	3	-	-
CO5	3	3	2	1	2	1	-	-	1	-	1	1	3	-	-
CO6	2	3	2	1	1	1	-	-	1	-	2	2	3	1	-

Guidelines: This Fundamentals of Data Structures Laboratory course has Fundamentals of Data Structures as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in C Language or C++. Use of open source platform and tools is encouraged

Term work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C or C++ Language

	Suggested List of Assignments									
Sr. No.	Assignment	No. of Hours	COs							
1.	Assignment based on matrix operations using pointer.	2 Hrs.	CO1CO2							
2.	Assignment based on string operations using pointer	2 Hrs.	CO1CO2							
3.	Assignment based on array of structures using with and without pointers.	2 Hrs.	CO1 CO2							
4.	Assignment based on Linear or Binary Search	2 Hrs.	CO3							
5.	Assignment based on Bubble Sort or Selection Sort.	2 Hrs.	CO4							
6.	Assignment based on Quick Sort or Insertion Sort.	2 Hrs.	CO4							
7.	Assignment based on Implementation of Stack and Queue and Circular Queue using array.	4 Hrs.	CO5 CO6							
8.	Assignment based on implementation Singly Linked list, DLL and Circular LL.	4 Hrs.	C05 CO6							
9.	Assignment based on applications of Stack & Queue	4 Hrs.	CO5 CO6							
10.	Assignment based on Implementation of Stack and Queue using Linked List.	4 Hrs.	CO5 CO6							

Text Books:

- 1. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", Universities Press, 2008.
- 2. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C, Second Edition", Cengage Learning.

- 1. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- 2. Aaron Tanenbaum, "Data Structures using C", Pearson Education.
- 3. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 4. Yashavant Kanetkar, "Understanding Pointers in C", BPB Publication.
- 5. Yashavant Kanetkar, "Let Us C", BPB Publication.

IT209: Object Oriented Programming Laboratory								
Teaching Scheme	Examination Scheme							
Lectures: 2 Hrs./Week	Term Work:	25 Marks						
	Oral:	25 Marks						
	Practical:	25 Marks						
Credits: 1	Total:	75 Marks						

Prerequisite Course: Computer Fundamentals and Programming

Course Objectives

- 1. To develop program to solve complex problems using syntax and semantics of C++ programming language.
- 2. To implement algorithms for solving problems using namespace, encapsulation concepts.
- 3. To develop a program using the friend function and data abstraction concept.
- 4. To discover, explore and apply polymorphism and inheritance concepts in OOP.
- 5. To develop programs that appropriately utilizes memory allocation concepts in OOP.
- **6.** To learn the use of templates in object oriented programming.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Develop program to solve complex problems using syntax and semantics of C++ programming language.	6	Create		
CO2	Implement algorithms for solving problems using namespace, encapsulation concepts.	3	Apply		
СОЗ	Develop a program using Friend function and data abstraction concept.	6	Create		
CO4	Discover , explore and apply polymorphism and inheritance concepts in object-oriented programming.	3	Apply		
CO5	Develop programs that appropriately utilize memory allocation concept in C++ programming language.	6	Create		
CO6	Apply the knowledge of Templates while implementing solution for complex problems.	3	Apply		

|--|

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		1	1	3	1	1	2	1		2	3	3		
CO2	2	3	2	1			1	1	1	2	2	1	3		
CO3	3			2	1		1	1	1	2	2	1	3		
CO4	2	3		2	1		1	1	1	2	2	1	3		
CO5	2		1				1	1	1		2	3	3		
CO6	2				2		1	1	1		2	3	3		

Guidelines: This Object Oriented Programming Laboratory course has Object Oriented Programming as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in C++ Language.

Term Work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C++ Language.

	Suggested List of Assignments										
Sr. No.	Assignments	No. of	COs								
		Hours									
1	Write a function in C++ to demonstrate call by reference, call by value	2 Hrs.	CO1								
	and call by pointer concept.										
2	Write a menu driven program with class, object and different types of	2 Hrs.	CO1								
	constructors.		CO2								
3	Write a program to demonstrate use of Friend function.	2 Hrs.	CO1								
			CO3								
4	Write a program to demonstrate compile time polymorphism (Operator	2 Hrs.	CO1								
	Overloading/ Function Overloading)		CO4								
5	Write a program to demonstrate run time polymorphism (Virtual	2 Hrs.	CO1								
	Function Concept)		CO4								
6	Write a program to demonstrate Encapsulation and Inheritance Concept	2 Hrs.	CO2								
			CO4								
7	Write a program to demonstrate Memory allocation in C++	2 Hrs.	CO1								
	,		CO5								
8	Write a program to demonstrate use of Template in C++	2 Hrs.	CO1								
			CO6								

Text Books:

- 1. E. Balagurusamy, "Object Oriented Programming with C++", McGraw Hill Edition 5th Edition.
- 2. Maureen Spankle, "Problem Solving and Programming Concepts", Pearson, 2011, ISBN-13: 978-0132492645.

- 1. Robert Lafore, "Object Oriented Programming in Turbo C++", Sams Publishing Edition 4th Edition.
- 2. Ira Pohl, "Object Oriented Programming using C++", Pearson Education Edition 2nd Edition Reprint 2004.

MC 210 : Indian Constitution(Mandatory Course – III)									
Teaching Scheme Examination Scheme									
Lectures: 2 Hrs./Week	Term Work:	NA							
	Oral:	NA							
	Practical:	NA							
Credits: Non Credit	Total:	NA							

Course Objectives

- 1. To study the historical background, salient features, preamble and union territories of Indian constitution.
- 2. To study the provision of fundamental right in the Indian constitution.
- 3. To study the directive principle of state policy and fundamental duties.
- **4.** To study the system of government through parliamentary and federal system.
- **5.** To understand the formation, structure and legislative framework of central government.
- **6.** To understand the formation, structure and legislative framework of state government.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonomy		
		Level	Descriptor	
CO1	The student will get acquainted with the historical background, salient			
COI	features, preamble and union territories of Indian constitution.			
CO2	The student will get aware about the fundamental rights.			
CO3	The student will get aware about directive principle of state policy and			
CO3	fundamental duties.			
CO4	The student will understand the system of government through			
CO4	parliamentary and federal system.			
CO5	The student will understand structure, formation and legislative			
COS	framework of central government.			
CO6	The student will understand structure, formation and legislative			
CO6	framework of state government.			

	Course Contents		
Unit-I	INTRODUCTION TO CONSTITUTION OF INDIA	No.of Hours	COs
	Historical background, Salient features, Preamble of constitution, Union and its territory.		
Unit-II	FUNDAMENTAL RIGHTS	No.of Hours	COs
	Features of fundamental rights, Basic rights: 1. Right to equality; 2. Right to freedom; 3. Right against exploitation; 4. Right to freedom of religion; 5. Cultural and educational rights; 6.Right to property; 7. Right to constitutional remedies.		
Unit-III	DIRECTIVE PRINCIPLE OF STATE POLICY AND FUNDAMENTAL DUTIES	No.of Hours	COs
	Directive principle of state policy: Features of directive principle, Classification of directive principle, Criticism of directive principle, Utility of directive principle, Conflict between Fundamental rights and directive principle. Fundamental duties: List of fundamental duties, Features of fundamental duties, Criticism of fundamental duties, Significance of fundamental duties, Swaran Singh Committee Recommendations.		
Unit-IV	SYSTEM OF GOVERNMENT	No.of Hours	COs
	Parliamentary system: Features of parliamentary government, Features of presidential government, merits and demerit of Parliamentary system. Federal system: Federal features of constitution, unitary features of constitution. Centre and state relation: Legislative relation, administrative relations and financial relation. Emergency provision: National emergency, Financial emergency and criticism of emergency provision.		
Unit-V	CENTRAL GOVERNMENT	No.of Hours	COs
	President: Election of president, powers and functions of president, and Veto power of president. Vice-president: Election of vice-president, powers and functions of vice-president. Prime minister: Appointment of PM, powers and functions of PM, relationship with president. Central council of ministers: Appointment of ministers, responsibility of ministers, features of cabinet committees, functions of cabinet committees. Parliament: Organization of parliament, composition of the two houses, duration two houses, membership of parliament, session of parliament, joint sitting of two houses, budget in parliament. Supreme court (SC): Organization of supreme court, independence		

	of supreme court, jurisdiction and powers of supreme court.		
Unit-VI	STATE GOVERNMENT	No.of Hours	COs
	Governor: Appointment of governor, powers and functions of governor, constitutional position.		
	Chief minister: Appointment of CM, powers and functions of CM, relationship with governor.		
	State council of ministers: Appointment of ministers, responsibility of ministers, cabinet.		
	High court (HC): Organization of HC, independence of HC, jurisdiction and powers of HC.		
	Sub-ordinate court: Structure and jurisdiction, Lok Adalats, Family court, Gram Nyayalayas.		

Text Books:

- M Laxmikanth, Indian Polity for Civil Service Examination, Mc GrawHill Education,
 5th Edition.
- 2. Durga Das Basu, LexisNexis, Introduction to the Constitution of India, 22nd Edition.

S.Y. B. Tech Information Technology Semester II

IT211: Discrete Mathematics									
Teaching Scheme	Examination Scheme								
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks							
Tutorial: 1 Hr/Week	In-Sem Exam:	30 Marks							
	End-Sem Exam:	50 Marks							
Credits: 4	Total:	100 Marks							
Prerequisite Course: Basic Mathematics									

Course Objectives

- 1. To provide the knowledge of Set, proof techniques and determine logical possibilities.
- 2. To understand relation, functions among various entities in real world.
- 3. To introduce the basic of Group and Ring.
- **4.** To learn to formulate problems mathematically using graph theory.
- **5.** To understand the fundamental mathematics requirement used in cryptographic algorithms.
- **6.** To comprehend the concept of decodability and prefix-free property.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Apply the various basic terminology of set, proof techniques and determine logical possibilities in a given situation.	3	Apply		
CO2	Develop an understanding of relations and functions and be able to determine their properties.	6	Create		
CO3	Solve problems based on Group and Rings.	3	Apply		
CO4	Relate , interpret and apply the concepts of Graph Theory in various areas of IT.	5	Evaluate		
CO5	Understand the fundamental mathematical requirement of cryptographic algorithms.	2	Understand		
CO6	Determine the relationships between decodability and the prefix-free property.	3	Apply		

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	1	1	1	2	1	1	1	2	1	-
CO2	3	3	1	1	1	1	1	1	2	1	1	2	-	-	-
CO3	3	3	2	2	1	1	1	1	2	1	1	2	-	-	-
CO4	3	3	2	2	1	2	1	1	2	1	1	2	-	-	-
CO5	3	3	2	2	2	1	1	2	2	1	2	2	-	2	-
CO6	3	3	2	1	1	2	1	1	2	1	2	2	-	-	2

	Course Contents		
Unit-I	COMBINATORICS	No. of Hours	COs
	Sets, Combinations of sets, Venn Diagrams, Finite and Infinite sets, Uncountable infinite sets, Principle of inclusion and exclusion, multisets. Propositions, Conditional Propositions, Logical Connectivity, Propositional calculus, Universal and Existential Quantifiers, Normal forms, methods of proofs, Mathematical Induction.	06	CO1
Unit-II	RELATIONS AND FUNCTIONS	No.of Hours	COs
	Relations: Binary Relations, Closure of relations, Warshall's algorithm, Equivalence Relations and partitions, Partial ordering relations and lattices, Chains and Anti chains. Recurrence Relation, Linear Recurrence Relations With constant Coefficients, Generating functions. Regression Analysis: Linear, Logistic and Polynomial Regression Function Functions, Composition of functions, Invertible functions, Pigeonhole Principle, Discrete Numeric functions and Generating functions, Job scheduling Problem.	06	CO2
Unit-III	GROUPS, SEQUENCES AND SUMMATIONS	No. of Hours	COs
	Group Theory: Elementary properties, subgroups, cosets, normal groups, quotient groups, cyclic groups, homomorphism and isomorphism, Isomorphism theorem, permutation groups, Sylow's theorem and application, Application to Number theory: Lagrange's theorem, Euler's theorem, Fermat's theorem. Sequences and summations: Arithmetic progression, Geometric progression, Recursively defined sequences, Fibonacci sequence, Summations, Arithmetic series, Double summations, Geometric series and Infinite geometric series.	06	CO3
Unit-IV	INFORMATION THEORY	No. of Hours	COs
	Information sources and entropy, Relative entropy, Joint and conditional entropy, mutual information, Lossless Source Coding with Variable Codeword Lengths, Best prefix-free codes, Huffman codes, Lossy Source Coding with Fixed Codeword Lengths, Channel Coding and Cyclic Codes.	06	CO4
Unit-V	INTEGER FOUNDATIONS	No. of Hours	COs
	Rings and fields: Rings, Ideals, maximal ideals, quotient rings, Integral domains, principal ideal domain(PID), Euclidean domain(ED), ring of integers as example of PID and ED, Euclidean algorithm for GCD, extended Euclidean algorithm, finding modular inverse of an integer, Chinese Remainder Theorem(CRT), Euler's φ-function, quadratic residues.	06	CO5
Unit-VI	INTRODUCTION TO STATISTICS AND PROBABILITY	No. of Hours	COs
	Statistics, notion of probability, distributions, mean, variance, covariance, covariance matrix, understanding univariate and multivariate normal distributions, introduction to hypothesis testing, confidence interval for	06	CO6

estimates, Simple	linear regression and verifying assumptions used in
linear regression,	Multivariate linear regression, model assessment,
assessing importan	ce of different variables, subset selection.

- 1. S.K. Chakraborty, B.K. Sarkar, "Discrete Mathematics and its Applications", Oxford University Press 2011, ISBN 9780198065432.
- 2. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", McGraw Hill 4th Edition.

- 1. N. Biggs, "Discrete Mathematics", Oxford University Press, 2nd Edition.
- 2. Singh, "Discrete Mathematical Structures", Wiley ISBN- 9788126527908.
- 3. Eric Gossett, "Discrete Mathematics with Proof", Wiley 2nd Edition ISBN-9788126527588.
- 4. Edgar G. Goodaire and Michael M. Parmenter, "Discrete Mathematics with Graph Theory", Pearson Education 3rd Edition, ISBN-13978013167995.
- 5. Richard Johnsonbaugh, "Discrete Mathematics", Pearson Education, 7th Edition ISBN: 9332535183.

IT 212: Database Management Systems							
Teaching Scheme	Examination Scheme						
Lectures: 3 Hrs./Week	Continuous Assessment:	20 Marks					
	In-Sem Exam:	30 Marks					
	End-Sem Exam:	50 Marks					
Credits: 3	Total:	100 Marks					
Prerequisite Course: Discrete Mathematics, Data Structures							

Course Objectives

- 1. To understand the fundamental concepts of database management.
- 2. To study systematic database design approaches.
- 3. To devise queries using Relational Algebra, SQL.
- **4.** To study basic issues of transaction processing, concurrency control.
- 5. To evaluate query and query optimization technique and learn recovery techniques.
- **6.** To learn and understand specialty databases.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	Taxonomy
	Course Outcome (s)	Level	Descriptor
CO1	Explore fundamental concepts of database management	2	Understand
CO2	Create systematic database design schema	6	Create
CO3	Devise Query to database using relational algebra and SQL.	3	Apply
CO4	Learn and understand transaction management and analyze concurrency control protocols.	4	Analyze
CO5	Evaluate and optimize queries and compare recovery scheme	5	Evaluate
CO6	Learn and understand large scale databases	2	Understand

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	3	-	-	1	3	-
CO2	-	2	3	2	-	-	_	-	-	-	-	-	-	-	2
CO3	2	-	-	-	3	-	-	ı	-	_	_	-	-	-	2
CO4	_	_	-	-	_	_	_	-	_	-	_	-	-	-	1
CO5	2	1	-		-	-	-	-	_	-	_	-	-	-	-
CO6	-	-	-		-	-	-	-	-	-	-	3	-	-	-

Course Contents							
Unit-I	INTRODUCTION TO DBMS AND E-R MODEL	No. of Hours	COs				
	Introduction Introduction to database systems application, purpose of database system. Introduction to Data models, Three-schema architecture of a database, Components of a DBMS. E-R model: modeling, entity, attributes, relationships, constraints, components of E-R model. Relational model: basic concepts, attributes and domains, concept of integrity and referential constraints, schema diagram.	06	CO1				
Unit-II	RELATIONAL ALGEBRA, SQL and QUERY PROCESSING	No.of Hours	COs				
	Relational Algebra: Basic Operations, Selection, projection, joining, outer join, union, difference, intersection, Cartesian product, division operations (examples of queries in relational algebraic usingsymbols). Introduction to SQL: Characteristics and advantages, SQL Data Types and Literals, DDL, DML, DCL, SQL Operators, Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updating using Views, Indexes, Nulls, SQL DML Queries: SELECT Query and clauses, Set Operations, Predicates and Joins, Set membership, Tuple Variables, Set comparison, Ordering of Tuples, Aggregate Functions, Nested Queries, Database Modification using SQL Insert, Update and Delete Queries. procedure and functions, triggers and cursors, Embedded SQL.						
Unit-III	RELATIONAL DATABASE DESIGN	No. of Hours	COs				
	Functional Dependency, Purpose of Normalization, Data Redundancy and Update Anomalies, Single Valued Normalization: 1NF, 2NF, 3NF, BCNF. Decomposition: lossless join decomposition and dependency preservation, Decomposition Algorithms. Multi valued Normalization (4NF), Join Dependencies and the Fifth Normal Form.	06	CO3				
Unit-IV	TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL	No. of Hours	COs				
	Transactions: Basic concept of a Transaction, Transaction Management, Properties of Transactions, Concept of Schedule, Serial Schedule, Serializability: Conflict and View, Cascaded Aborts, Recoverable and No recoverable Schedules. Concurrency Control: Time-stamps and locking protocols, validation-based protocols, multiple granularity protocols, deadlock handling.	06	CO4				
Unit-V	RECOVERY SYSTEM AND QUERY OPTIMIZATION	No. of Hours	COs				
	Recovery System: Shadow-Paging and Log-Based Recovery, Checkpoints. Query Processing: Overview, Measures of query cost, Evaluation of expression, Materialization and Pipelining algorithm.	6	CO5				
Unit-VI	EMERGING DATABASE TECHNOLOGIES	No. of Hours	COs				

J	JSON: Overview, Data Types, Objects, Schema, JSON with		
J	Java/PHP/Ruby/Python.		
I	Introduction to No SQL Databases-SQLite Database, XML Databases,		
	MongoDB.	6	CO6
1	Hadoop: HDFS, Dealing with Massive Datasets-Map Reduce and	6	C06
I	Hadoop.		
I	Introduction to HBase: Overview, HBase Data Model, HBase Region,		
I	Hive.		

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", 6thEdition, McGraw Hill, 2010.
- 2. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", SecondEdition, McGraw Hill International Editions, ISBN 978-0072465631.
- 3. Kristina Chodorow and MongoDB, "The Definitive Guide", O'Reilly Publications, ISBN:978-93-5110-269-4,2nd Edition.

- 1. Ramez Elmasri and Shamkant B. Navathe, "Fundamental Database Systems", ThirdEdition, Pearson Education, 2003, ISBN 978-0321204486.
- 2. "Big Data Black Book", DT Editorial services, 2015 Edition.
- 3. Hellerstein, Joseph, and Michael Stonebraker, "Readings in Database Systems (The Red Book)", 4th Edition, MIT Press, 2005, ISBN: 9780262693141.

IT213: Microprocessor & Microcontroller							
Teaching Scheme Examination Scheme							
Lectures: 4 Hrs./Week Continuous Assessment: 20 Ma							
	In-Sem Exam:	30 Marks					
	End-Sem Exam:	50 Marks					
Credits: 4	Total:	100 Marks					
Prerequisite Course: Computer Organization & Digital Electronics							

Course Objectives

- 1. To state architectural details of 8086, 80386 microprocessor and 8051 micro controller.
- 2. To describe advance features of 80386 microprocessor and 8051 micro controller.
- 3. To use Assembly Language Programming concepts.
- **4.** To demonstrate interfacing of 8051 micro-controller with I/O devices through I/O ports.
- 5. To differentiate between microprocessor and micro-controller.
- **6.** To design a minimum system using 8051 micro-controller for a typical application.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's Taxonom		
	Course Outcome (s)	Level	Descriptor	
CO1	State architectural details of 8086, 80386 microprocessor and 8051 micro controller.	1	Remember	
CO2	Describe advance features of 80386 microprocessor and 8051 micro controller.	2	Understand	
CO3	Use Assembly Language Programming concepts.	3	Apply	
CO4	Demonstrate interfacing of 8051 micro-controller with I/O devices through I/O ports.	3	Apply	
CO5	Differentiate between microprocessor and micro-controller.	4	Analyze	
CO6	Design a minimum system using 8051 micro-controller for a typical application.	6	Create	

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	3	-	-	_	-	_	-	_	3	1
CO2	3	1	2	1	1	3	-	-	_	-	-	-	_	3	1
CO3	2	1	3	1	1	2	-	-	_	-	_	-	-	3	1
CO4	2	1	3	1	1	2	1	-	2	-	-	-	-	3	2
CO5	2	3	2	2	1	2	1	-	1	-	-	-	_	3	1
CO6	2	1	3	1	1	2	2	-	2	-	-	-	-	3	2

	Course Contents						
Unit-I	INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING	No.of Hours	COs				
	Introduction to assembly language programming. ALP Tools: Assembler, Linker, Loader, Debugger, Emulator. Assembler directives, Far and near procedure, Macros, DOS Interrupts.	08	СОЗ				
Unit-II	INTRODUCTION TO 8086 & 80386 PROCESSOR	No.of Hours	COs				
	Introduction to 8086 Processor: Features, Architecture, Pin configuration, Instruction set, Addressing modes. 80386 Processor: 80386 Family, Features, Architecture, Pin Description, Register Set, Addressing modes, Instruction set.	08	CO1 CO2				
Unit-III	SEGMENTATION	No.of Hours	COs				
	Segmentation: Introduction, Real mode segmentation. 80386 Protected Mode Segmentation: Segment Selector & Descriptors, Descriptor Types, System Tables (IDT,LDT,GDT), Logical to linear/physical address translation.						
Unit-IV	PROTECTION MECHANISM & PAGING	No.of Hours	COs				
	Protection in segmentation: Protection Levels, Privileged instructions, Inter-privilege level transfer using Call gates and conforming code segment. Paging: support registers, Data structures, Descriptors, Linear to physical address translation, Page level protection. Multitasking: TSS, Task Switching.	08	CO2				
Unit-V	INTRODUCTION TO 8051 MICROCONTROLLER	No.of Hours	COs				
	Microprocessor Vs Microcontroller. 8051 microcontroller: 8051 family, Features, Architecture, Pin Description, Register bank and Special Function Registers (SFRs), Addressing modes, Instruction set, External data memory and program memory organization. I/O ports programming: Structures, Related SFRs and Configuration.	08	CO1 CO2 CO5				
Unit-VI	8051 INTERFACING & APPLICATIONS	No.of Hours	COs				
	Timers/counters programming: Structure, Related SFRs, Operating modes, Delay calculations and Configuration. Serial port programming: Related SFRs, Operating modes, Baud rate calculation and Configuration. Interfacing of displays: LED, LCD, keys, ADC & DAC, stepper motor, Sensors (temperature, pressure). Design of minimum system using 8051 micro-controller for an applications.	08	CO4 CO6				

- **1.** Peter Abel, NiyazNizamuddin, "IBM PC Assembly Language and Programming", Pearson Education.
- 2. James Turley, "Advanced 80386 Programming Techniques", McGraw Hill Education.
- **3.** A. Ray, K.Bhurchandi, "Advanced Microprocessors and peripherals: Arch, Programming &Interfacing", Tata McGraw Hill, 2004, ISBN 0-07-463841-6.
- **4.** M. A. Mazidi, J. G. Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education.

- 1. Intel Datasheets of 8086, 80386 Microprocessors & 8051 Microcontroller.
- 2. Walter A. Tribel, Avtar Singh, "The 8088 and 8086 Microprocessors", 4thEdition, Prentice Hall of India.
- 3. Ray Duncan, "Advanced MS DOS Programming", 2nd Edition, BPB Publications.
- **4.** Kenneth Ayala,"The 8051 Micro Controller", 3rdEdition, Delmar Cengage Learning.
- 5. I. Scott MacKenzie, Raphael C.-W. Phan, "8051 Microcontroller", 4th Edition, Pearson Education
- **6.** Joshi, "Processor Architecture and Interfacing", Wiley, ISBN-9788126545605.
- 7. Douglas Hall, "Microprocessors and Interfacing", 2nd Edition, 1992, McGraw-Hill, ISBN-0-07-100462-9.

IT214: Data Structures and Files							
Teaching Scheme	Examination Scheme						
Lectures: 4 Hrs./Week	Continuous Assessment:	20 Marks					
	In-Sem Exam:	30 Marks					
	End-Sem Exam:	50 Marks					
Credits: 4	Total:	100 Marks					
Prerequisite Course: Fundamentals of Data Structures							

Course Objectives

- 1. To study data structures and their implementations using OOP (C++) and their applications.
- 2. To study dynamic memory allocation concepts.
- **3.** To learn data structures such as trees and graphs.
- **4.** To learn hash tables and its implementations.
- **5.** To study advanced data structures such as advance trees such as AVL trees, splay trees, B and B+ trees.
- **6.** To learn different file organizations.

Course Outcomes (COs):

After successful completion of the course, student will be able to

	Course Outcome (s)	Bloom's	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor			
CO1	Understand different algorithm design techniques.	2	Remember			
CO2	Apply appropriate construct of data structure to implement trees and graph.	3	Apply			
СОЗ	Use dynamic memory allocation concepts and file handling in various application developments.	3	Apply			
CO4	Apply and Implement learned algorithm design techniques and data structures to solve problems.	3	Apply			
CO5	Analyze algorithms to determine algorithm correctness and time efficiency.	4	Analyze			
CO6	Select appropriate data structures for problem solving.	5	Evaluate			

Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	-	-	-	1	1	1	-	3	-	2
CO2	2	1	3	1	1	-	_	-	1	1	1	-	3	-	2
CO3	2	1	3	1	1	1	-	-	1	1	1	-	3	-	2
CO4	2	1	3	1	1	1	-	-	1	1	1	-	3	-	2
CO5	1	3	2	1	1	-	-	-	1	1	1	-	3	-	2
CO6	1	1	2	3	1	1	-	-	1	1	1	-	3	-	2

	Course Contents						
Unit-I	TREES	No.of Hours	COs				
	Trees and binary trees-concept and terminology. Expression tree. Conversion of general tree to binary tree. Binary tree as an Abstract Data Type(ADT). Recursive and non-recursive algorithms for binary tree traversals, construction of tree from its traversals, Binary search trees, Binary search tree as ADT, Applications of trees.	08	CO2 CO5				
Unit-II	GRAPHS	No.of Hours	COs				
	Graph as an ADT, Representation of graphs using adjacency matrix and adjacency list, Depth First Search and Breadth First Search traversal. Prim's and Kruskal's algorithms for minimum spanning tree, shortest path using Warshall's and Dijkstra's algorithm, topological sorting.	08	CO2 CO4 CO5				
Unit-III							
	Symbol Table: Notion of Symbol Table, OBST, Huffman's algorithm, Heap data structure, Min and MaxHeap, Heap sort implementation, applications of heap: priority queue.	08	CO6				
Unit-IV	HASH TABLES	No.of Hours	COs				
	Hash tables and scattered tables: Basic concepts, hash function, characteristics of good hash function, different key-to-address transformations techniques, synonyms or collisions, collision resolution techniques- linear probing, quadratic probing, rehashing, chaining without replacement and chaining with replacement.	08	CO4 CO6				
Unit-V	SEARCH TREE	No.of Hours	COs				
	Concept of threaded binary tree, AVL Trees, Concept of red and black trees, Multiway Trees: B trees, B+ trees, Splay trees.	08	CO2 CO5 CO6				
Unit-VI	FILE ORGANIZATION	No.of Hours	COs				
T4 D1	External storage devices, File, File types and file organization: Sequential, Index sequential and Direct access, Primitive operations and implementations for each type. Comparison of file organizations.	08	СОЗ				

- **1.** Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Second Edition.
- **2.** R.Gilberg, B. Forouzan, "Data Structure: A Pseudo code approach with C++", Cengage learning.
- **3.** Sartaj Sahni, "Data Structures, Algorithms and Applications in C++",2nd Edition, Universities Press.

- **1.** Robert Sedgewick and Kevin Wayne, "Algorithms", 4th Edition; Pearson Education,ISBN-13: 978-0321573513.
- **2.** E. Horowitz, S. Sahni, S.Anderson-freed, "Fundamentals of Data Structures in C", Second Edition, University Press, ISBN 978-81-7371-605-8.
- 3. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C++", Galgotia

Book.

- 4. Alan Tharp, "File Organization and Processing", Willey India edition.
- 5. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- **6.** Goodrich, "Data Structures and Algorithms in C++", Wiley.

IT215 : Database Management Systems Laboratory								
Teaching Scheme	Examination Scheme							
Lectures: 2 Hrs./Week	Term Work:	25 Marks						
	Oral:	50 Marks						
	Practical:	NA						
Credits: 1	Total:	75 Marks						

Prerequisite Course: Database Management Systems

Course Objectives

- 1. To design and implement a database schema for a given problem-domain.
- 2. To implement DDL commands on database.
- **3.** To implement DML commands on database.
- **4.** To implement Nested subqueries and aggregate function to retrieve data.
- **5.** To programme PL/SQL including stored procedures, stored functions, cursors and packages.
- **6.** To learn NoSQL database system.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor		
CO1	Analyze entity-relationship models and implement database and queries using DDL & DCL commands.	4	Analyze		
CO2	Understand and Implement DML commands.	3	Apply		
СОЗ	Populate and query a database using aggregate functions and nested sub-query.	3	Apply		
CO4	Develop application programs using triggers.	3	Apply		
CO5	Develop application programs using stored procedure and cursor.	3	Apply		
CO6	Populate and query a database using MongoDB commands.	3	Apply		

Mapping	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	1	-	-	-	-	-	-	2	-	-	1	3	-
CO2	1	2	-	-	-	-	-	-	-	-	-	-	-	-	3
CO3	1	-	2	-	3	-	-	-	-	-	-	-	-	-	1
CO4	1	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	3	-	-	-	-	_	-	1	_	-
CO6	-	-	-	-	3	-	-	-	-	3	2	-	-	-	-

Guidelines: This Database System Laboratory course has Database Systems as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have two hours to complete that. The oral examination will comprise of implementation and related theory. All assignments are to be performed in open source software tools. Use of open source platform and tools is encouraged.

Term work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted on open source software tools

assign	assignments should be conducted on open source software tools							
	Suggested List of Assignments							
Sr. No.	Assignment	No. of Hours	COs					
1	Design any database with at least 3 entities and relationships between them. Apply DCL and DDL commands.	2	CO2					
2	Design and implement a database and apply at least 10 different DML queries. Make use of wild characters and LIKE operator, Make use of Boolean and arithmetic operators.	2	СОЗ					
3	Design and implement a database and apply the aggregate functions like count, sum, avg etc. Use group by and having clauses.	2	СОЗ					
4	Implement nested sub queries. Perform a test for set membership (in, not in), set comparison (<some,>=some, <all etc.).<="" td=""><td>2</td><td>CO4</td></all></some,>	2	CO4					
5	Write and execute triggers on suitable database.	2	CO5					
6	Write and execute PL/SQL stored procedure/function using cursors to perform a suitable task on the database.	2	CO5					
7	Create a database with suitable example using MongoDB and implement CRUD operations. Inserting and saving document Removing document Updating document (document replacement, using modifiers, upserts, updating multipledocuments, returning updated documents)	2	CO6					
8	Execute at least 10 queries on any suitable MongoDB database that demonstrates following querying techniques: • Find and findOne (specific values) • Query criteria (Query conditionals, OR queries, \$not, Conditional semantics) • Type-specific queries (Null, Regular expression, Querying arrays)	2	CO6					
9	Execute at least 10 queries on any suitable MongoDB database that demonstrates following: • \$ where queries • Cursors (Limits, skips, sorts, advanced query options)	2	CO6					
1.0		_	006					

Reference Books:

1. Ivan Bayross, SQL, "PL/SQL: The Programming Language of Oracle", BPB Publication.

CO6

- 2. Weinberg, Paul N., et al. "SQL, the Complete Reference", McGraw-Hill, 2010.
- 3. Kristina Chodorow, "MongoDB The definitive guide", O'Reilly Publications, ISBN: 978-93-5110-269-4, 2ndEdition.
- 4. Dr. P. S. Deshpande, "SQL and PL/SQL for Oracle 10g Black Book", Dream Tech.
- 5. George Reese and Randy Jay Yarger, "Managing And Using MySQL", O Reilly.

10 Implement Map reduce example with suitable example.

IT216: Microprocessor & Micro-controller Laboratory							
Teaching Scheme	Examination Scheme						
Lectures: 2 Hrs./Week	Term Work:	25 Marks					
	Oral:	NA					
	Practical:	50 Marks					
Credits: 1	Total:	75 Marks					

Prerequisite Course: Microprocessor & Micro-controller

Course Objectives

- 1. To learn programmer's model for 80386 microprocessor and 8051 micro-controller.
- 2. To explain interfacing of I/O devices with 8051.
- 3. To use different tools for development of ALP.
- 4. To use DOS interrupts for file operations.
- 5. To select programming features between macros and procedures.
- 6. To develop ALP for array addition, code conversion, block transfer, string operations and sorting operations.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	Bloom's Taxonomy			
	Course Outcome (s)	Level	Descriptor			
CO1	Learn programmer's model for 80386 microprocessor and 8051 micro-controller.	1	Remember			
CO2	Explain interfacing of I/O devices with 8051.	2	Understand			
CO3	Use different tools for development of ALP.	3	Apply			
CO4	Use DOS interrupts for file operations.	3	Apply			
CO5	Select programming features between macros and procedures.	5	Evaluate			
CO6	Develop ALP for array addition, number conversion, block transfer, string manipulation operations and sorting operations.	6	Create			

Mapp	Mapping of Course Outcomes to Program Outcomes (POs) & Program Specific Outcomes (PSOs):										SOs):				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1	1	2	-	1	-	-	-	-	3	2
CO2	3	1	2	1	1	1	2	-	3	2	1	-	-	3	2
CO3	2	1	3	1	1	1	-	_	2	1	-	-	-	3	2
CO4	2	1	3	1	1	1	-	-	2	1	-	-	-	3	2
CO5	1	2	1	3	1	1	-	-	1	-	-	-	-	3	2
CO6	2	1	3	1	1	3	-	-	3	2	1	-	-	3	2

Guidelines: This Microprocessor & Micro-controller Laboratory course has Microprocessor & Micro-controller as a core subject. The problem statements should be framed based on assignments mentioned in the syllabus. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in MASM/TASM, TURBO DEBUGGER, 8051 Simulator and 8051 Trainer kit with interfacing devices. Use of open source platform and tools is encouraged

Term work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in 8086 and 8051 ALP.

	Suggested List of Assignments									
Group A	MICROPROCESSOR PROGRAMMING USING 8086	No. of Hours	COs							
1.	Assignment on addition of N numbers stored in the memory using macros.	2 Hrs.	CO1, CO3, CO5, CO6							
2.	Assignment on number conversion using macros.	2 Hrs.	CO1, CO3, CO5, CO6							
3.	Assignment on string manipulations using near and far procedure.	2 Hrs.	CO1, CO3, CO5, CO6							
4.	Assignment on File operation using DOS interrupts.	2 Hrs.	CO1, CO3, CO4, CO6							
Group B	MICRO-CONTROLLER PROGRAMMING	No. of Hours	COs							
5.	Assignment on memory block transfer.	2 Hrs.	CO1, CO3, CO6							
6.	Assignment on Timer programming: ISR based.	2 Hrs.	CO1, CO2, CO3							
7.	Assignment on ADC and Sensor (Eg. Temperature) Interfacing.	2 Hrs.	CO1, CO2, CO3							
8.	Assignment on LCD interfacing.	2 Hrs.	CO1, CO2, CO3							

- 1. Peter Abel, Niyaz Nizamuddin, "IBM PC Assembly Language and Programming", Pearson Education
- 2. Ray Duncan, "Advanced MS DOS Programming", 2ndEdition, BPB Publications
- 3. Intel 8051 Micro-controller manual.
- 4. M. A. Mazidi, J. G. Mazidi, "The 8051 Microcontroller and Embedded Systems", Pearson Education.

IT217: Data Structures & Files Laboratory								
Teaching Scheme	Examination Scheme							
Lectures: 2 Hrs./Week	Term Work:	25 Marks						
	Oral:	NA						
	Practical:	50 Marks						
Credits: 1	Total:	75 Marks						

Prerequisite Course: Fundamentals of Data Structures, C++ Programming.

Course Objectives

- **1.** To learn C++ constructs and coding standards.
- **2.** To learn non-linear data structures such as trees and graphs.
- **3.** To study advanced data structures such as tables.
- **4.** To study advanced data structures such as hash tables.
- **5.** To learn advanced Tree.
- **6.** To learn different file organizations.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	s Taxonomy
	Course Outcome (s)	Level	Descriptor
CO1	Apply construct of C++ language, coding standard for application development.	3	Apply
CO2	Implement algorithms to create/represent and traverse non-linear data structures such as Trees and Graphs.	3	Apply
CO3	Apply the concept of heap for implementation of Priority queue.	3	Apply
CO4	Apply the concept of hashing in database creation and manipulation.	3	Apply
CO5	Implement algorithm to construct and traverse advanced tree.	3	Apply
CO6	Implement and Apply algorithms to create and manipulate database using different file organizations.	3	Apply

Mapping	of Cou	ırse O	utcom	es to	Progra	ım Out	comes	(POs) & Pr	ogram	Specif	ic Outc	omes (P	SOs):	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	1	2	1	-	-	2	1	-	-	3	-	2
CO2	2	1	3	1	1	1	-	-	2	1	-	-	3	-	2
CO3	2	1	3	1	1	1	-	-	2	1	_	-	3	-	2
CO4	2	1	3	1	1	1	-	-	2	1	-	-	3	-	2
CO5	2	1	3	1	1	1	-	-	2	1	-	-	3	-	2
CO6	2	1	3	1	1	1	-	-	2	1	-	-	3	-	2

Guidelines: This Advanced Data Structures Laboratory course has Advanced Data Structures as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in C++ Language.

Term Work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in C++ Language.

	Suggested List of Assignments		
Sr. No.	Assignments	No. of Hours	COs
1	Assignment based on implementation of tree.	2 Hrs.	CO1,CO2
2	Assignment based on traversal of tree.	2 Hrs.	CO1,CO2
3	Assignment based on minimum spanning tree.	2 Hrs.	CO1,CO2
4	Assignment based on shortest path in graph.	2 Hrs.	CO1,CO2
5	Assignment based on implementation of priority queue as application of heap.	2 Hrs.	CO1,CO3
6	Assignment based on Implement hash table.	2 Hrs.	CO1,CO4
7	Assignment based on implementation of advanced tree.	2 Hrs.	CO1,CO5
8	Assignment based on file organizations.	2 Hrs.	CO1,CO6

Books:

- 1. R.Gilberg, B. Forouzan, "Data Structure: A Pseudo code approach with C++", Cengage learning.
- 2. E. Horowitz, S. Sahni, D. Mehta, "Fundamentals of Data Structures in C++", Galgotia Book.
- 3. Sartaj Sahni, "Fundamentals of Data Structures", University Press.
- 4. Robert Sedgewick and Kevin Wayne, "Algorithms" 4th Edition; Pearson Education, ISBN-13: 978-0321573513.
- 5. Y. Langsam, M. Augenstin, A. Tannenbaum, "Data Structures using C and C++", Prentice Hall of India.
- 6. Goodrich, "Data Structures and Algorithms in C++", Wiley.
- 7. A. Tharp, "File Organization and Processing", Willey India Edition.
- 8. G. A.V, Pai, "Data Structures and Algorithms", McGraw Hill.

IT218	: Seminar	
Teaching Scheme	Examination Sche	me
Lectures: 2 Hrs./Week	Term Work:	NA
	Oral:	NA
	Practical:	50 Marks
Credits: 2	Total:	75 Marks

Prerequisite Course: Basic Communication, Reading Skill and writing skill.

Course Objectives

- 1. To explore the basic principles of communication (verbal and non-verbal) and active,
- 2. To explore the empathetic listening, speaking and writing techniques.
- 3. To build independent thinking on complex problem.
- **4.** To expose the student to new technologies, researches, products, algorithms, services.
- **5.** To study and summarize the literature survey.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	Taxonomy
	Course Outcome (s)	Level	Descriptor
CO1	Familiar with basic technical writing concepts and terms, such as audience analysis, jargon, format, visuals, and presentation.	2	Understand
CO2	Improve skills to read, understand, and interpret material on technology.	3	Apply
CO3	Improve communication and writing skills	4	Analyze
CO4	Create and present the study using multimedia and presentation skill.	6	Create
CO5	Write and analyze a technical report summarizing state-of-the-art on an identified topic.	4	Analyze
CO6	Analyze and summarize the literature survey.	5	Evaluate

Мар	ping c	of Cou	rse Ou	tcomes	to Pro	ogram	Outco	mes (POs) &	& Progr	am Spe	cific O	utcome	s (PSOs):
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	_	3	2	_	1	-	3	2	-	_	_	-	3
CO2	-	-	-	3	2	-	1	-	3	2	-	-	-	-	3
CO3	_	_	_	3	2	_	1	-	3	2	-	_	_	-	3
CO4	-	_	_	3	2	_	1	-	3	2	-	-	-	-	3
CO5	-	-	-	3	2	-	1	-	3	2	-	_	-	-	3
CO6	-	-	-	3	2	-	1	-	3	2	-	-	-	-	3

Course Content

Context

- Each student will select a topic in the area of Information Technology and Computer Engineering preferably keeping track with recent technological trends and development beyond scope of syllabus avoiding repetition in consecutive years.
- The topic must be selected in consultation with the institute guide.
- Each student will make a seminar presentation using audio/visual aids for a duration of 20-25 minutes and submit the seminar report prepared in Latex only.
- Active participation at classmate seminars is essential.
- Seminar Log book is recommended to use it.
- Seminar should make the student attain skills like:
 - a) Gathering of literature in specific area in a focused manner.
 - b) Effectively summarizing the literature to find state-of-the-art in proposed area.
 - c) Identifying scope for future work.
 - d) Presenting (arguing) the case for the intended work to be done as project.
 - e) Reporting literature review and proposed work in scientific way using good English.

Guidelines for Assessment:

Panel of staff members along with a guide would be assessing the seminar work based on parameters

- Topic
- Contents
- Presentation
- Regularity
- Punctuality
- Timely Completion
- Ouestion and Answers.
- Report, Paper presentation/Publication, Attendance and Active Participation.

Attendance for all seminars for all students is compulsory.

Criteria for Evaluation

- a) Relevance of topic 05 Marks
- b) Relevance + depth of literature reviewed- 10 Marks
- c) Seminar report (Technical Content) 10 Marks
- d) Seminar report (Language) 05 Marks
- e) Presentation Slides 05 Marks
- f) Communication Skills 05 Marks
- g) Question and Answers 10 Marks

Guidelines for Seminar Presentation:

Term Work:

- The term work will consist of a report and presentation prepared by the student on the seminar topic
- A panel of examiner will evaluate the viability of project scope and seminar delivery.
- Oral examination in the form of presentation will be based on the project and seminar work completed by the candidates.
- Seminar report must be presented during the presentation.

- 1. Rebecca Stott, Cordelia Bryan, Tory Young, "Speaking Your Mind: Oral Presentation and Seminar Skills (Speak-Write Series)", Longman, ISBN-13: 978-0582382435.
- 2. Johnson-Sheehan, Richard, "Technical Communication", Longman, ISBN 0-321-11764-6.

3.	Vikas Shirodka, "Fundamental skills for building Professionals", SPD,ISBN 978-93-5213-146-
	5.

IT219 : Mini Project		
Teaching Scheme	Examination S	Scheme
Lectures: 4 Hrs./Week	Term Work:	50 Marks
	Oral:	NA
	Practical:	NA
Credits: 2	Total:	50 Marks

Prerequisite Course: Fundamental of Programming Languages.

Course Objectives

- 1. To acquire the fundamental principles, concepts and constructs of computer programming.
- **2.** To build the programming skills using PHP to solve real world problems.
- 3. To develop competency for the design, coding and debugging.
- **4.** To acquire theoretical and analytical skills to develop web applications.
- 5. To understand the concepts, principles, strategies, and methodologies of Web applications.
- **6.** To design and develop websites using PHP and MySQL.

Course Outcomes (COs):

	Course Outcome (s)	Bloom's	Taxonomy
	Course Outcome (s)	Level	Descriptor
CO1	Use modular programming approach in diversified problem domains.	3	Apply
CO2	Apply programming logic of PHP to solve real world problems.	3	Apply
CO3	Decide effectiveness of computer based solutions.	2	Understand
CO4	Have a sufficient theoretical knowledge and analytical skills to develop Web applications.	6	Create
CO5	Apply the described concepts, principles and methods to develop web applications.	3	Apply
CO6	Design and develop website using PHP and MySQL.	6	Create

Mapping	of Co	urse O	utcom	es to P	rogran	outco	mes (P	Os) &	Progra	am Spe	ecific O	utcome	s (PSO	s):	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	1	2	2	_	-	3	3	2	3	2	-	3
CO2	2	1	3	1	1	3	1	-	3	3	2	3	2	-	3
CO3	2	1	1	1	3	2	1	-	3	3	2	3	2	-	3
CO4	2	1	3	1	1	1	1	-	3	3	2	3	2	-	3
CO5	2	1	3	1	1	1	1	-	3	3	2	3	2	-	3
CO6	2	1	3	1	1	3	1	-	3	3	2	3	2	-	3

Guidelines: This Mini Project Laboratory course has Programming Languages as a core subject. The problem statements should be framed based on mentioned assignments in the syllabus for conduction of practical examination. The teacher will frame the problem statements with due consideration that students have three hours to complete that. The practical examination will comprise of implementation and related theory. All assignments are to be performed in PHP and MySOL.

Term Work: Staff in-charge will suitably frame the above assignments and flexibility may be incorporated. Students will submit term work in the form of journal. Each assignment has to be well documented with problem definition, code documented with comments. Staff in-charge will assess the assignments continuously and grade or mark each assignment on completion date. All the assignments should be conducted in PHP and MySQL.

	Suggested List of Assignments								
Sr. No.	Assignments	No. of Hours	COs						
1	Assignment on PHP Basics, Data types, Variables and Constants.	4 Hrs.	CO1, CO5						
2	Assignment on Operators in PHP, Control Structures, Looping Structures.	4 Hrs.	CO1, CO5						
3	Assignment on Conditional Statements, Array.	4 Hrs.	CO1, CO5						
4	Assignment on Function, User defined Functions, String Function.	4 Hrs.	CO2, CO3						
5	Assignment on Form Elements, PHP POST & GET Form elements.	4 Hrs.	CO2, CO3						
6	Assignment on Form Validating form data. Include and Require in form.	4 Hrs.	CO4						
7	Assignment on State Management: Cookies, Session management.	4 Hrs.	CO2, CO3						
8	Assignment on PHP Myadmin: Creating Database & Tables, Dropping Database & Tables, Adding Fields, Selecting Tables.	4 Hrs.	CO4, CO5						
9	Mini Project using PHP and MySQL.	4 Hrs.	CO2,CO5,CO6						

Books:

- 1. Steve Holzner, "The Complete Reference PHP", TATA McGraw Hill.
- 2. Ivan Bayross, "Web Enabled Commercial Application Development Using HTML, JavaScript, DHTML and PHP", 4th Edition, BPB Publications. ISBN: 9788183330084.
- 3. "Web Technologies Black Book: HTML, JavaScript, PHP, Java, JSP, XML and AJAX", Kogent Learning Solutions Inc. ISBN: 9788126554560, 8126554568.
- 4. Vikram Waswani, "The Complete Reference MySQL", TATA McGraw Hill.
- 5. Luke Welling and Laura Thomson, "PHP and MySQL Web Development", Addison Wesley, 5th Edition, 2017.

	d – Sc., Tech, Social	, Design	&
Innovation(Mandato	ory Course – IV)		
Teaching Scheme	Examination Sc	heme	
Lectures: 2 Hrs./Week	Term Work:		NA
	Oral:		NA
	Practical:		NA
Credits: Non Credit	Total:		NA
Course Objectives			
Course Outcomes (COs):			
After successful completion of the course, student wi	ill be able to		
	ill be able to		s Taxonomy
After successful completion of the course, student with Course Outcome (s)	ill be able to	Bloom's Level	s Taxonomy Descriptor
After successful completion of the course, student with Course Outcome (s)	ill be able to		
After successful completion of the course, student with Course Outcome (s) CO1 CO2	ill be able to		
After successful completion of the course, student with Course Outcome (s)	ill be able to		
After successful completion of the course, student with Course Outcome (s) CO1 CO2	ill be able to		
After successful completion of the course, student with Course Outcome (s) CO1 CO2 CO3	ill be able to		

Many students, when they enter engineering, are full of enthusiasm to understand new areas, to build systems and to experiment and play with them. This enthusiasm is to be tapped and to direct it to exploration and sustained pursuit by the student, which may result in development of a working system, a prototype, or a device or material, etc. They are no required or even expected to produce research or an innovation. Students may be encouraged to take up projects which are aimed a providing solutions to societal problems, reduce drudgery and improving efficiency in rural work, green technologies, utilization of rural and urbar waste, sanitation and public health, utilizing non-conventional energy sources, technologies for the benefit of the differently abled people and	No.of Hours	COs
understand new areas, to build systems and to experiment and play with them. This enthusiasm is to be tapped and to direct it to exploration and sustained pursuit by the student, which may result in development of a working system, a prototype, or a device or material, etc. They are no required or even expected to produce research or an innovation. Students may be encouraged to take up projects which are aimed a providing solutions to societal problems, reduce drudgery and improving efficiency in rural work, green technologies, utilization of rural and urbar waste, sanitation and public health, utilizing non-conventional energy sources, technologies for the benefit of the differently abled people and		COS
technologies ready to be implemented in the Institute. Two types of activities may be undertaken under this (a) Exposure to social problems (which are amenable to technologica solutions) (b) Design & Innovation (to address above problems) After this students be encouraged to undertake technology projects of social relevance. Text Books:		